--- base_model: - black-forest-labs/FLUX.1-Krea-dev base_model_relation: quantized pipeline_tag: text-to-image tags: - dfloat11 - df11 - lossless compression - 70% size, 100% accuracy --- # DFloat11 Compressed Model: `black-forest-labs/FLUX.1-Krea-dev` This is a **DFloat11 losslessly compressed** version of the original `black-forest-labs/FLUX.1-Krea-dev` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**. 🔥🔥🔥 Thanks to DFloat11 compression, FLUX.1-Krea-dev can now run on a single 24GB GPU, or on a 12GB GPU with CPU offloading, while maintaining full model quality. 🔥🔥🔥 ### 📊 Performance Comparison | Model | Model Size | Peak GPU Memory (1024×1024 image generation) | Generation Time (A100 GPU) | |------------------------------------------------|------------|----------------------------------------------|----------------------------| | FLUX.1-Krea-dev (BFloat16) | 23.80 GB | 24.28 GB | 56 seconds | | FLUX.1-Krea-dev (DFloat11) | 16.33 GB | 17.54 GB | 58 seconds | | FLUX.1-Krea-dev (DFloat11 + GPU Offloading) | 16.33 GB | 9.76 GB | 78 seconds | ### 🔧 How to Use 1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*: ```bash pip install -U dfloat11[cuda12] ``` 2. Install or upgrade diffusers: ```bash pip install -U diffusers ``` 3. Save the following code to a Python file `krea.py`: ```python import argparse import time import torch from diffusers import FluxPipeline from dfloat11 import DFloat11Model # Parse command line arguments parser = argparse.ArgumentParser(description="Generate images using FLUX.1-Krea-dev model") parser.add_argument( "--prompt", type=str, help="Text prompt for image generation", default="An astronaut, helmet off, sits at a tiny table set on the tip of a crescent moon, sipping tea while gazing at a swirling galaxy in the distance. Stars twinkle around, casting a gentle glow on the lunar surface.", ) parser.add_argument("--width", type=int, default=1024, help="Image width") parser.add_argument("--height", type=int, default=1024, help="Image height") parser.add_argument("--guidance_scale", type=float, default=4.5, help="Guidance scale for generation") parser.add_argument("--save_file_name", type=str, default="flux-krea-dev.png", help="Output file name") parser.add_argument("--cpu_offload", action="store_true", help="Enable DFloat11 CPU offloading") args = parser.parse_args() # Load the pipeline pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-Krea-dev", torch_dtype=torch.bfloat16, ) # Load DFloat11 model DFloat11Model.from_pretrained( "DFloat11/FLUX.1-Krea-dev-DF11", bfloat16_model=pipe.transformer, device="cpu", cpu_offload=args.cpu_offload, ) pipe.enable_model_cpu_offload() start_time = time.time() # Generate image image = pipe( args.prompt, height=args.height, width=args.width, guidance_scale=args.guidance_scale, ).images[0] end_time = time.time() # Save the image image.save(args.save_file_name) # Print time and memory usage print(f"Time taken: {end_time - start_time:.2f} seconds") peak_memory = torch.cuda.max_memory_allocated() print(f"Peak memory: {peak_memory / 1000 ** 3:.2f} GB") ``` 4. To run without CPU offloading (18GB VRAM required): ```bash python krea.py ``` To run with CPU offloading (10GB VRAM required): ```bash python krea.py --cpu_offload ``` ### 🔍 How It Works We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU. The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model. Learn more in our [research paper](https://arxiv.org/abs/2504.11651). ### 📄 Learn More * **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) * **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) * **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)