# -*- coding: utf-8 -*- # Copyright 2026 EngineerGL Research. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import PretrainedConfig class AlinlightConfig(PretrainedConfig): """ Configuration class for Alinlight model. Args: vocab_size (int): Vocabulary size of the model. hidden_size (int): Dimensionality of the encoder layers and the pooler layer. intermediate_size (int): Dimensionality of the "intermediate" (i.e., feed-forward) layer. num_hidden_layers (int): Number of hidden layers in the Transformer encoder. num_attention_heads (int): Number of attention heads for each attention layer. num_key_value_heads (int): Number of key/value heads for Grouped Query Attention. max_position_embeddings (int): The maximum sequence length that this model might ever be used with. rope_theta (float): The base period of the RoPE embeddings. rope_scaling (dict, optional): Dictionary containing the scaling configuration for the RoPE embeddings. sliding_window (int, optional): Sliding window size for local attention. None to disable. attention_dropout (float): The dropout ratio for the attention probabilities. use_qk_norm (bool): Whether to apply RMSNorm to Query and Key matrices. attn_logit_softcapping (float, optional): If set, applies tanh soft-capping to attention logits (Gemma-2 style). rms_norm_eps (float): The epsilon used by the rms normalization layers. initializer_range (float): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. resid_pdrop (float): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embed_pdrop (float): The dropout probability for the embedding layer. embed_scale (bool): Whether to scale embeddings by sqrt(hidden_size). final_logit_softcapping (float, optional): If set, applies tanh soft-capping to final LM head logits. z_loss_weight (float): Coefficient for the Z-loss regularization term (stabilizes final logits). """ model_type = "alinlight" def __init__( self, # Architecture vocab_size=128000, hidden_size=2048, intermediate_size=5632, num_hidden_layers=22, num_attention_heads=32, num_key_value_heads=8, # Positional Encoding max_position_embeddings=4096, rope_theta=10000.0, rope_scaling=None, # Attention sliding_window=None, attention_dropout=0.0, use_qk_norm=True, attn_logit_softcapping=50.0, # Normalization & Regularization rms_norm_eps=1e-6, initializer_range=0.02, resid_pdrop=0.0, embed_pdrop=0.0, # Stability Features embed_scale=True, final_logit_softcapping=30.0, z_loss_weight=1e-4, # System use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=True, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.max_position_embeddings = max_position_embeddings self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.sliding_window = sliding_window self.attention_dropout = attention_dropout self.use_qk_norm = use_qk_norm self.attn_logit_softcapping = attn_logit_softcapping self.rms_norm_eps = rms_norm_eps self.initializer_range = initializer_range self.resid_pdrop = resid_pdrop self.embed_pdrop = embed_pdrop self.embed_scale = embed_scale self.final_logit_softcapping = final_logit_softcapping self.z_loss_weight = z_loss_weight self.use_cache = use_cache super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs )