Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- configs/delta_net_1B.json +29 -0
- configs/delta_net_340M.json +27 -0
- configs/gla_340M.json +24 -0
- configs/gla_7B.json +25 -0
- configs/gsa_340M.json +29 -0
- configs/hgrn2_340M.json +20 -0
- configs/rectified_transformer_120M.json +19 -0
- configs/rectified_transformer_340M.json +19 -0
- configs/scaled_softpick_transformer_120M.json +19 -0
- configs/scaled_softpick_transformer_340M.json +19 -0
- configs/scaled_vanilla_transformer_120M.json +19 -0
- configs/scaled_vanilla_transformer_340M.json +19 -0
- configs/softpick_transformer_120M.json +19 -0
- configs/softpick_transformer_1B.json +23 -0
- configs/softpick_transformer_340M.json +19 -0
- configs/softpick_transformer_7B.json +22 -0
- configs/softpick_transformer_with_pruning_340M.json +63 -0
- configs/stochastic_softpick_transformer_120M.json +20 -0
- configs/transformer_120M.json +19 -0
- configs/transformer_340M.json +18 -0
- configs/vanilla_transformer_340M.json +19 -0
- fla/__init__.py +114 -0
- fla/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/__pycache__/utils.cpython-311.pyc +0 -0
- fla/layers/__init__.py +44 -0
- fla/layers/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/layers/__pycache__/abc.cpython-311.pyc +0 -0
- fla/layers/__pycache__/attn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/based.cpython-311.pyc +0 -0
- fla/layers/__pycache__/bitattn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/delta_net.cpython-311.pyc +0 -0
- fla/layers/__pycache__/gsa.cpython-311.pyc +0 -0
- fla/layers/__pycache__/linear_attn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/rebased.cpython-311.pyc +0 -0
- fla/layers/abc.py +218 -0
- fla/layers/attn.py +490 -0
- fla/layers/based.py +96 -0
- fla/layers/bitattn.py +192 -0
- fla/layers/delta_net.py +291 -0
- fla/layers/forgetting_attn.py +109 -0
- fla/layers/gated_deltanet.py +293 -0
- fla/layers/gated_deltaproduct.py +351 -0
- fla/layers/gla.py +294 -0
- fla/layers/gsa.py +227 -0
- fla/layers/hgrn.py +168 -0
- fla/layers/hgrn2.py +211 -0
- fla/layers/lightnet.py +210 -0
- fla/layers/linear_attn.py +166 -0
- fla/layers/multiscale_retention.py +298 -0
- fla/layers/nsa.py +138 -0
configs/delta_net_1B.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn": null,
|
| 3 |
+
"attn_mode": "chunk",
|
| 4 |
+
"bos_token_id": 1,
|
| 5 |
+
"conv_size": 4,
|
| 6 |
+
"eos_token_id": 2,
|
| 7 |
+
"expand_k": 1,
|
| 8 |
+
"expand_v": 1,
|
| 9 |
+
"fuse_cross_entropy": true,
|
| 10 |
+
"fuse_norm": true,
|
| 11 |
+
"hidden_act": "swish",
|
| 12 |
+
"hidden_ratio": 4,
|
| 13 |
+
"hidden_size": 2048,
|
| 14 |
+
"initializer_range": 0.006,
|
| 15 |
+
"intermediate_size": null,
|
| 16 |
+
"model_type": "delta_net",
|
| 17 |
+
"norm_eps": 1e-06,
|
| 18 |
+
"num_heads": 16,
|
| 19 |
+
"num_hidden_layers": 24,
|
| 20 |
+
"pad_token_id": 2,
|
| 21 |
+
"qk_activation": "silu",
|
| 22 |
+
"qk_norm": "l2",
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"use_beta": true,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"use_gate": false,
|
| 27 |
+
"use_output_norm": true,
|
| 28 |
+
"use_short_conv": true
|
| 29 |
+
}
|
configs/delta_net_340M.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn_mode": "chunk",
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"conv_size": 4,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"expand_k": 1,
|
| 7 |
+
"expand_v": 1,
|
| 8 |
+
"fuse_cross_entropy": true,
|
| 9 |
+
"hidden_act": "swish",
|
| 10 |
+
"hidden_ratio": 4,
|
| 11 |
+
"hidden_size": 1024,
|
| 12 |
+
"initializer_range": 0.006,
|
| 13 |
+
"intermediate_size": null,
|
| 14 |
+
"model_type": "delta_net",
|
| 15 |
+
"norm_eps": 1e-06,
|
| 16 |
+
"norm_first": false,
|
| 17 |
+
"num_heads": 8,
|
| 18 |
+
"num_hidden_layers": 24,
|
| 19 |
+
"qk_activation": "silu",
|
| 20 |
+
"qk_norm": "l2",
|
| 21 |
+
"tie_word_embeddings": false,
|
| 22 |
+
"use_beta": true,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"use_gate": false,
|
| 25 |
+
"use_output_norm": true,
|
| 26 |
+
"use_short_conv": true
|
| 27 |
+
}
|
configs/gla_340M.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn_mode": "chunk",
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"clamp_min": null,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"expand_k": 0.5,
|
| 7 |
+
"expand_v": 1,
|
| 8 |
+
"fuse_cross_entropy": true,
|
| 9 |
+
"fuse_norm": true,
|
| 10 |
+
"hidden_act": "swish",
|
| 11 |
+
"hidden_ratio": 4,
|
| 12 |
+
"hidden_size": 1024,
|
| 13 |
+
"initializer_range": 0.006,
|
| 14 |
+
"intermediate_size": null,
|
| 15 |
+
"model_type": "gla",
|
| 16 |
+
"num_heads": 4,
|
| 17 |
+
"num_hidden_layers": 24,
|
| 18 |
+
"norm_eps": 1e-06,
|
| 19 |
+
"tie_word_embeddings": false,
|
| 20 |
+
"use_cache": true,
|
| 21 |
+
"use_gk": true,
|
| 22 |
+
"use_gv": false,
|
| 23 |
+
"vocab_size": 32000
|
| 24 |
+
}
|
configs/gla_7B.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn": null,
|
| 3 |
+
"attn_mode": "chunk",
|
| 4 |
+
"bos_token_id": 1,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"expand_k": 0.5,
|
| 7 |
+
"expand_v": 1,
|
| 8 |
+
"fuse_cross_entropy": true,
|
| 9 |
+
"fuse_norm": true,
|
| 10 |
+
"hidden_act": "swish",
|
| 11 |
+
"hidden_ratio": 4,
|
| 12 |
+
"hidden_size": 4096,
|
| 13 |
+
"initializer_range": 0.006,
|
| 14 |
+
"intermediate_size": 11008,
|
| 15 |
+
"model_type": "gla",
|
| 16 |
+
"norm_eps": 1e-06,
|
| 17 |
+
"num_heads": 16,
|
| 18 |
+
"num_hidden_layers": 32,
|
| 19 |
+
"tie_word_embeddings": false,
|
| 20 |
+
"use_cache": true,
|
| 21 |
+
"use_gk": true,
|
| 22 |
+
"use_gv": false,
|
| 23 |
+
"use_output_gate": true,
|
| 24 |
+
"use_short_conv": false
|
| 25 |
+
}
|
configs/gsa_340M.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"conv_size": 4,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"expand_k": 1,
|
| 6 |
+
"expand_v": 1,
|
| 7 |
+
"elementwise_affine": false,
|
| 8 |
+
"feature_map": "swish",
|
| 9 |
+
"fuse_cross_entropy": true,
|
| 10 |
+
"fuse_norm": true,
|
| 11 |
+
"gate_logit_normalizer": 4,
|
| 12 |
+
"hidden_act": "swish",
|
| 13 |
+
"hidden_ratio": 4,
|
| 14 |
+
"hidden_size": 1024,
|
| 15 |
+
"initializer_range": 0.006,
|
| 16 |
+
"intermediate_size": null,
|
| 17 |
+
"model_type": "gsa",
|
| 18 |
+
"num_heads": 4,
|
| 19 |
+
"num_hidden_layers": 24,
|
| 20 |
+
"num_slots": 64,
|
| 21 |
+
"norm_eps": 1e-06,
|
| 22 |
+
"share_conv_kernel": true,
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"use_norm": true,
|
| 26 |
+
"use_output_gate": true,
|
| 27 |
+
"use_rope": false,
|
| 28 |
+
"use_short_conv": false
|
| 29 |
+
}
|
configs/hgrn2_340M.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn_mode": "chunk",
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"expand_ratio": 128,
|
| 6 |
+
"fuse_cross_entropy": true,
|
| 7 |
+
"fuse_norm": true,
|
| 8 |
+
"hidden_act": "swish",
|
| 9 |
+
"hidden_ratio": 4,
|
| 10 |
+
"hidden_size": 1024,
|
| 11 |
+
"initializer_range": 0.006,
|
| 12 |
+
"intermediate_size": null,
|
| 13 |
+
"model_type": "hgrn2",
|
| 14 |
+
"num_heads": 8,
|
| 15 |
+
"num_hidden_layers": 24,
|
| 16 |
+
"norm_eps": 1e-06,
|
| 17 |
+
"tie_word_embeddings": false,
|
| 18 |
+
"use_cache": true,
|
| 19 |
+
"vocab_size": 32000
|
| 20 |
+
}
|
configs/rectified_transformer_120M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": false,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"max_position_embeddings": 4096,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 12,
|
| 13 |
+
"num_hidden_layers": 14,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": true,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "naive_rectified_attn"
|
| 19 |
+
}
|
configs/rectified_transformer_340M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 1024,
|
| 9 |
+
"initializer_range": 0.006,
|
| 10 |
+
"max_position_embeddings": 8192,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 16,
|
| 13 |
+
"num_hidden_layers": 24,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": false,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_rectified_attn"
|
| 19 |
+
}
|
configs/scaled_softpick_transformer_120M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": false,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"max_position_embeddings": 4096,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 12,
|
| 13 |
+
"num_hidden_layers": 14,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": true,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_scaled_softpick_attn"
|
| 19 |
+
}
|
configs/scaled_softpick_transformer_340M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 1024,
|
| 9 |
+
"initializer_range": 0.006,
|
| 10 |
+
"max_position_embeddings": 8192,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 16,
|
| 13 |
+
"num_hidden_layers": 24,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": false,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_scaled_softpick_attn"
|
| 19 |
+
}
|
configs/scaled_vanilla_transformer_120M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": false,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"max_position_embeddings": 4096,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 12,
|
| 13 |
+
"num_hidden_layers": 14,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": true,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_scaled_attn"
|
| 19 |
+
}
|
configs/scaled_vanilla_transformer_340M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 1024,
|
| 9 |
+
"initializer_range": 0.006,
|
| 10 |
+
"max_position_embeddings": 8192,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 16,
|
| 13 |
+
"num_hidden_layers": 24,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": false,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_scaled_attn"
|
| 19 |
+
}
|
configs/softpick_transformer_120M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": false,
|
| 6 |
+
"fuse_norm": false,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"max_position_embeddings": 4096,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 12,
|
| 13 |
+
"num_hidden_layers": 14,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": true,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_softpick_attn"
|
| 19 |
+
}
|
configs/softpick_transformer_1B.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"elementwise_affine": true,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"fuse_swiglu": true,
|
| 8 |
+
"hidden_act": "swish",
|
| 9 |
+
"hidden_ratio": 4,
|
| 10 |
+
"hidden_size": 2048,
|
| 11 |
+
"initializer_range": 0.006,
|
| 12 |
+
"intermediate_size": null,
|
| 13 |
+
"max_position_embeddings": 8192,
|
| 14 |
+
"model_type": "transformer",
|
| 15 |
+
"norm_eps": 1e-06,
|
| 16 |
+
"num_heads": 32,
|
| 17 |
+
"num_hidden_layers": 32,
|
| 18 |
+
"num_kv_heads": null,
|
| 19 |
+
"pad_token_id": 2,
|
| 20 |
+
"rope_theta": 10000.0,
|
| 21 |
+
"tie_word_embeddings": false,
|
| 22 |
+
"attn_impl": "parallel_softpick_attn"
|
| 23 |
+
}
|
configs/softpick_transformer_340M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 1024,
|
| 9 |
+
"initializer_range": 0.006,
|
| 10 |
+
"max_position_embeddings": 8192,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 16,
|
| 13 |
+
"num_hidden_layers": 24,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": false,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_softpick_attn"
|
| 19 |
+
}
|
configs/softpick_transformer_7B.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_ratio": 4,
|
| 9 |
+
"hidden_size": 4096,
|
| 10 |
+
"initializer_range": 0.006,
|
| 11 |
+
"intermediate_size": 14336,
|
| 12 |
+
"model_type": "transformer",
|
| 13 |
+
"norm_eps": 1e-06,
|
| 14 |
+
"num_heads": 32,
|
| 15 |
+
"num_hidden_layers": 32,
|
| 16 |
+
"num_kv_heads": 8,
|
| 17 |
+
"rope_theta": 10000.0,
|
| 18 |
+
"tie_word_embeddings": false,
|
| 19 |
+
"use_cache": true,
|
| 20 |
+
"window_size": null,
|
| 21 |
+
"attn_impl": "parallel_softpick_attn"
|
| 22 |
+
}
|
configs/softpick_transformer_with_pruning_340M.json
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"attn_impl": "parallel_softpick_attn",
|
| 4 |
+
"bos_token_id": 1,
|
| 5 |
+
"elementwise_affine": true,
|
| 6 |
+
"eos_token_id": 2,
|
| 7 |
+
"fuse_cross_entropy": true,
|
| 8 |
+
"fuse_norm": true,
|
| 9 |
+
"fuse_swiglu": true,
|
| 10 |
+
"hidden_act": "swish",
|
| 11 |
+
"hidden_ratio": 4,
|
| 12 |
+
"hidden_size": 1024,
|
| 13 |
+
"initializer_range": 0.006,
|
| 14 |
+
"intermediate_size": null,
|
| 15 |
+
"layer_head_pruned": [
|
| 16 |
+
[
|
| 17 |
+
2,
|
| 18 |
+
1
|
| 19 |
+
],
|
| 20 |
+
[
|
| 21 |
+
2,
|
| 22 |
+
7
|
| 23 |
+
],
|
| 24 |
+
[
|
| 25 |
+
2,
|
| 26 |
+
12
|
| 27 |
+
],
|
| 28 |
+
[
|
| 29 |
+
2,
|
| 30 |
+
13
|
| 31 |
+
],
|
| 32 |
+
[
|
| 33 |
+
3,
|
| 34 |
+
5
|
| 35 |
+
],
|
| 36 |
+
[
|
| 37 |
+
3,
|
| 38 |
+
13
|
| 39 |
+
],
|
| 40 |
+
[
|
| 41 |
+
3,
|
| 42 |
+
14
|
| 43 |
+
],
|
| 44 |
+
[
|
| 45 |
+
13,
|
| 46 |
+
6
|
| 47 |
+
]
|
| 48 |
+
],
|
| 49 |
+
"max_position_embeddings": 8192,
|
| 50 |
+
"model_type": "transformer_with_pruning",
|
| 51 |
+
"norm_eps": 1e-06,
|
| 52 |
+
"num_heads": 16,
|
| 53 |
+
"num_hidden_layers": 24,
|
| 54 |
+
"num_kv_heads": null,
|
| 55 |
+
"qk_norm": false,
|
| 56 |
+
"qkv_bias": false,
|
| 57 |
+
"rope_theta": 10000.0,
|
| 58 |
+
"tie_word_embeddings": false,
|
| 59 |
+
"transformers_version": "4.51.3",
|
| 60 |
+
"use_cache": true,
|
| 61 |
+
"vocab_size": 32000,
|
| 62 |
+
"window_size": null
|
| 63 |
+
}
|
configs/stochastic_softpick_transformer_120M.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": false,
|
| 6 |
+
"fuse_norm": false,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"max_position_embeddings": 4096,
|
| 11 |
+
"model_type": "stochastic_softpick_transformer",
|
| 12 |
+
"num_heads": 12,
|
| 13 |
+
"num_hidden_layers": 14,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": true,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_softpick_attn",
|
| 19 |
+
"stochastic_p": 0.9
|
| 20 |
+
}
|
configs/transformer_120M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": false,
|
| 6 |
+
"fuse_norm": false,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"max_position_embeddings": 4096,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 12,
|
| 13 |
+
"num_hidden_layers": 14,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": true,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl" : "parallel_attn"
|
| 19 |
+
}
|
configs/transformer_340M.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": false,
|
| 6 |
+
"fuse_norm": false,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 1024,
|
| 9 |
+
"initializer_range": 0.006,
|
| 10 |
+
"max_position_embeddings": 8192,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 16,
|
| 13 |
+
"num_hidden_layers": 24,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": false,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000
|
| 18 |
+
}
|
configs/vanilla_transformer_340M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 1024,
|
| 9 |
+
"initializer_range": 0.006,
|
| 10 |
+
"max_position_embeddings": 8192,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 16,
|
| 13 |
+
"num_hidden_layers": 24,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": false,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "parallel_attn"
|
| 19 |
+
}
|
fla/__init__.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from fla.layers import (
|
| 4 |
+
ABCAttention,
|
| 5 |
+
Attention,
|
| 6 |
+
BasedLinearAttention,
|
| 7 |
+
BitAttention,
|
| 8 |
+
DeltaNet,
|
| 9 |
+
GatedDeltaNet,
|
| 10 |
+
GatedDeltaProduct,
|
| 11 |
+
GatedLinearAttention,
|
| 12 |
+
GatedSlotAttention,
|
| 13 |
+
HGRN2Attention,
|
| 14 |
+
HGRNAttention,
|
| 15 |
+
LightNetAttention,
|
| 16 |
+
LinearAttention,
|
| 17 |
+
MultiScaleRetention,
|
| 18 |
+
NativeSparseAttention,
|
| 19 |
+
ReBasedLinearAttention,
|
| 20 |
+
RWKV6Attention,
|
| 21 |
+
RWKV7Attention,
|
| 22 |
+
)
|
| 23 |
+
from fla.models import (
|
| 24 |
+
ABCForCausalLM,
|
| 25 |
+
ABCModel,
|
| 26 |
+
BitNetForCausalLM,
|
| 27 |
+
BitNetModel,
|
| 28 |
+
DeltaNetForCausalLM,
|
| 29 |
+
DeltaNetModel,
|
| 30 |
+
GatedDeltaNetForCausalLM,
|
| 31 |
+
GatedDeltaNetModel,
|
| 32 |
+
GatedDeltaProductForCausalLM,
|
| 33 |
+
GatedDeltaProductModel,
|
| 34 |
+
GLAForCausalLM,
|
| 35 |
+
GLAModel,
|
| 36 |
+
GSAForCausalLM,
|
| 37 |
+
GSAModel,
|
| 38 |
+
HGRN2ForCausalLM,
|
| 39 |
+
HGRN2Model,
|
| 40 |
+
HGRNForCausalLM,
|
| 41 |
+
LightNetForCausalLM,
|
| 42 |
+
LightNetModel,
|
| 43 |
+
LinearAttentionForCausalLM,
|
| 44 |
+
LinearAttentionModel,
|
| 45 |
+
NSAForCausalLM,
|
| 46 |
+
NSAModel,
|
| 47 |
+
RetNetForCausalLM,
|
| 48 |
+
RetNetModel,
|
| 49 |
+
RWKV6ForCausalLM,
|
| 50 |
+
RWKV6Model,
|
| 51 |
+
RWKV7ForCausalLM,
|
| 52 |
+
RWKV7Model,
|
| 53 |
+
TransformerForCausalLM,
|
| 54 |
+
TransformerModel,
|
| 55 |
+
TransformerWithPruningForCausalLM,
|
| 56 |
+
TransformerWithPruningModel
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
__all__ = [
|
| 60 |
+
'ABCAttention',
|
| 61 |
+
'Attention',
|
| 62 |
+
'BasedLinearAttention',
|
| 63 |
+
'BitAttention',
|
| 64 |
+
'DeltaNet',
|
| 65 |
+
'GatedDeltaNet',
|
| 66 |
+
'GatedDeltaProduct',
|
| 67 |
+
'GatedLinearAttention',
|
| 68 |
+
'GatedSlotAttention',
|
| 69 |
+
'HGRNAttention',
|
| 70 |
+
'HGRN2Attention',
|
| 71 |
+
'LightNetAttention',
|
| 72 |
+
'LinearAttention',
|
| 73 |
+
'MultiScaleRetention',
|
| 74 |
+
'NativeSparseAttention',
|
| 75 |
+
'ReBasedLinearAttention',
|
| 76 |
+
'RWKV6Attention',
|
| 77 |
+
'RWKV7Attention',
|
| 78 |
+
'ABCForCausalLM',
|
| 79 |
+
'ABCModel',
|
| 80 |
+
'BitNetForCausalLM',
|
| 81 |
+
'BitNetModel',
|
| 82 |
+
'DeltaNetForCausalLM',
|
| 83 |
+
'DeltaNetModel',
|
| 84 |
+
'GatedDeltaNetForCausalLM',
|
| 85 |
+
'GatedDeltaNetModel',
|
| 86 |
+
'GatedDeltaProductForCausalLM',
|
| 87 |
+
'GatedDeltaProductModel',
|
| 88 |
+
'GLAForCausalLM',
|
| 89 |
+
'GLAModel',
|
| 90 |
+
'GSAForCausalLM',
|
| 91 |
+
'GSAModel',
|
| 92 |
+
'HGRNForCausalLM',
|
| 93 |
+
'HGRNModel',
|
| 94 |
+
'HGRN2ForCausalLM',
|
| 95 |
+
'HGRN2Model',
|
| 96 |
+
'LightNetForCausalLM',
|
| 97 |
+
'LightNetModel',
|
| 98 |
+
'LinearAttentionForCausalLM',
|
| 99 |
+
'LinearAttentionModel',
|
| 100 |
+
'NSAForCausalLM',
|
| 101 |
+
'NSAModel',
|
| 102 |
+
'RetNetForCausalLM',
|
| 103 |
+
'RetNetModel',
|
| 104 |
+
'RWKV6ForCausalLM',
|
| 105 |
+
'RWKV6Model',
|
| 106 |
+
'RWKV7ForCausalLM',
|
| 107 |
+
'RWKV7Model',
|
| 108 |
+
'TransformerForCausalLM',
|
| 109 |
+
'TransformerModel',
|
| 110 |
+
'TransformerWithPruningForCausalLM',
|
| 111 |
+
'TransformerWithPruningModel',
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
__version__ = '0.1.2'
|
fla/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (2.46 kB). View file
|
|
|
fla/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (13.9 kB). View file
|
|
|
fla/layers/__init__.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from .abc import ABCAttention
|
| 5 |
+
from .attn import Attention
|
| 6 |
+
from .based import BasedLinearAttention
|
| 7 |
+
from .bitattn import BitAttention
|
| 8 |
+
from .delta_net import DeltaNet
|
| 9 |
+
from .forgetting_attn import ForgettingAttention
|
| 10 |
+
from .gated_deltanet import GatedDeltaNet
|
| 11 |
+
from .gated_deltaproduct import GatedDeltaProduct
|
| 12 |
+
from .gla import GatedLinearAttention
|
| 13 |
+
from .gsa import GatedSlotAttention
|
| 14 |
+
from .hgrn import HGRNAttention
|
| 15 |
+
from .hgrn2 import HGRN2Attention
|
| 16 |
+
from .lightnet import LightNetAttention
|
| 17 |
+
from .linear_attn import LinearAttention
|
| 18 |
+
from .multiscale_retention import MultiScaleRetention
|
| 19 |
+
from .nsa import NativeSparseAttention
|
| 20 |
+
from .rebased import ReBasedLinearAttention
|
| 21 |
+
from .rwkv6 import RWKV6Attention
|
| 22 |
+
from .rwkv7 import RWKV7Attention
|
| 23 |
+
|
| 24 |
+
__all__ = [
|
| 25 |
+
'ABCAttention',
|
| 26 |
+
'Attention',
|
| 27 |
+
'BasedLinearAttention',
|
| 28 |
+
'BitAttention',
|
| 29 |
+
'DeltaNet',
|
| 30 |
+
'ForgettingAttention',
|
| 31 |
+
'GatedDeltaNet',
|
| 32 |
+
'GatedDeltaProduct',
|
| 33 |
+
'GatedLinearAttention',
|
| 34 |
+
'GatedSlotAttention',
|
| 35 |
+
'HGRNAttention',
|
| 36 |
+
'HGRN2Attention',
|
| 37 |
+
'LightNetAttention',
|
| 38 |
+
'LinearAttention',
|
| 39 |
+
'MultiScaleRetention',
|
| 40 |
+
'NativeSparseAttention',
|
| 41 |
+
'ReBasedLinearAttention',
|
| 42 |
+
'RWKV6Attention',
|
| 43 |
+
'RWKV7Attention',
|
| 44 |
+
]
|
fla/layers/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (1.52 kB). View file
|
|
|
fla/layers/__pycache__/abc.cpython-311.pyc
ADDED
|
Binary file (9.8 kB). View file
|
|
|
fla/layers/__pycache__/attn.cpython-311.pyc
ADDED
|
Binary file (25 kB). View file
|
|
|
fla/layers/__pycache__/based.cpython-311.pyc
ADDED
|
Binary file (6.93 kB). View file
|
|
|
fla/layers/__pycache__/bitattn.cpython-311.pyc
ADDED
|
Binary file (9.64 kB). View file
|
|
|
fla/layers/__pycache__/delta_net.cpython-311.pyc
ADDED
|
Binary file (13.1 kB). View file
|
|
|
fla/layers/__pycache__/gsa.cpython-311.pyc
ADDED
|
Binary file (10.3 kB). View file
|
|
|
fla/layers/__pycache__/linear_attn.cpython-311.pyc
ADDED
|
Binary file (7.99 kB). View file
|
|
|
fla/layers/__pycache__/rebased.cpython-311.pyc
ADDED
|
Binary file (7.2 kB). View file
|
|
|
fla/layers/abc.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
|
| 13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, RotaryEmbedding, ShortConvolution
|
| 14 |
+
from fla.modules.activations import swiglu, swish
|
| 15 |
+
from fla.ops.abc.chunk import chunk_abc
|
| 16 |
+
|
| 17 |
+
if TYPE_CHECKING:
|
| 18 |
+
from fla.models.utils import Cache
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ABCAttention(nn.Module):
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
hidden_size: int = 1024,
|
| 26 |
+
expand_k: float = 0.5,
|
| 27 |
+
expand_v: float = 1.0,
|
| 28 |
+
num_heads: int = 4,
|
| 29 |
+
use_short_conv: bool = False,
|
| 30 |
+
conv_size: int = 4,
|
| 31 |
+
conv_bias: bool = False,
|
| 32 |
+
num_slots: Optional[int] = None,
|
| 33 |
+
elementwise_affine: Optional[bool] = True,
|
| 34 |
+
norm_eps: float = 1e-5,
|
| 35 |
+
gate_low_rank_dim: int = 16,
|
| 36 |
+
gate_logit_normalizer: int = 16,
|
| 37 |
+
use_rope: bool = True,
|
| 38 |
+
use_input_gate: bool = False,
|
| 39 |
+
use_output_gate: bool = True,
|
| 40 |
+
use_norm: bool = True,
|
| 41 |
+
clamp_min: Optional[float] = -32,
|
| 42 |
+
clamp_max: Optional[float] = 32,
|
| 43 |
+
layer_idx: Optional[int] = None,
|
| 44 |
+
**kwargs
|
| 45 |
+
) -> ABCAttention:
|
| 46 |
+
super().__init__()
|
| 47 |
+
|
| 48 |
+
self.hidden_size = hidden_size
|
| 49 |
+
self.expand_k = expand_k
|
| 50 |
+
self.expand_v = expand_v
|
| 51 |
+
self.num_heads = num_heads
|
| 52 |
+
self.key_dim = int(self.hidden_size * self.expand_k)
|
| 53 |
+
self.value_dim = int(self.hidden_size * self.expand_v)
|
| 54 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
| 55 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
| 56 |
+
|
| 57 |
+
self.use_short_conv = use_short_conv
|
| 58 |
+
self.conv_size = conv_size
|
| 59 |
+
self.conv_bias = conv_bias
|
| 60 |
+
|
| 61 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
| 62 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
| 63 |
+
|
| 64 |
+
self.use_rope = use_rope
|
| 65 |
+
self.use_input_gate = use_input_gate
|
| 66 |
+
self.use_output_gate = use_output_gate
|
| 67 |
+
self.use_norm = use_norm
|
| 68 |
+
|
| 69 |
+
if num_slots is None:
|
| 70 |
+
num_slots = self.head_k_dim
|
| 71 |
+
self.num_slots = num_slots
|
| 72 |
+
|
| 73 |
+
self.norm_eps = norm_eps
|
| 74 |
+
|
| 75 |
+
self.clamp_min = clamp_min
|
| 76 |
+
self.clamp_max = clamp_max
|
| 77 |
+
self.layer_idx = layer_idx
|
| 78 |
+
|
| 79 |
+
if layer_idx is None:
|
| 80 |
+
warnings.warn(
|
| 81 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 82 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 83 |
+
"when creating this class."
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
| 87 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
| 88 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
| 89 |
+
|
| 90 |
+
if use_output_gate:
|
| 91 |
+
self.g_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
| 92 |
+
self.s_proj = nn.Linear(self.hidden_size, self.num_heads * self.num_slots, bias=False)
|
| 93 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
| 94 |
+
|
| 95 |
+
if use_short_conv:
|
| 96 |
+
self.conv_size = conv_size
|
| 97 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
| 98 |
+
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
| 99 |
+
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
|
| 100 |
+
|
| 101 |
+
if self.use_norm:
|
| 102 |
+
if self.use_output_gate:
|
| 103 |
+
self.g_norm = FusedRMSNormGated(
|
| 104 |
+
hidden_size=self.head_v_dim,
|
| 105 |
+
elementwise_affine=elementwise_affine,
|
| 106 |
+
eps=norm_eps
|
| 107 |
+
)
|
| 108 |
+
else:
|
| 109 |
+
self.g_norm = RMSNorm(
|
| 110 |
+
hidden_size=self.head_v_dim,
|
| 111 |
+
elementwise_affine=elementwise_affine,
|
| 112 |
+
eps=norm_eps
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
if self.use_rope:
|
| 116 |
+
self.rotary = RotaryEmbedding(self.head_k_dim)
|
| 117 |
+
|
| 118 |
+
def forward(
|
| 119 |
+
self,
|
| 120 |
+
hidden_states: torch.Tensor,
|
| 121 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 122 |
+
past_key_values: Optional[Cache] = None,
|
| 123 |
+
use_cache: Optional[bool] = False,
|
| 124 |
+
output_attentions: Optional[bool] = False,
|
| 125 |
+
**kwargs
|
| 126 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 127 |
+
if attention_mask is not None:
|
| 128 |
+
assert len(attention_mask.shape) == 2, (
|
| 129 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 130 |
+
"for padding purposes (0 indicating padding). "
|
| 131 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
last_state = None
|
| 135 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 136 |
+
last_state = past_key_values[self.layer_idx]
|
| 137 |
+
|
| 138 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 139 |
+
if cu_seqlens is not None:
|
| 140 |
+
raise NotImplementedError("Training with cu_seqlens is not supported yet for ABCAttention")
|
| 141 |
+
if self.use_short_conv:
|
| 142 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 143 |
+
if last_state is not None:
|
| 144 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
| 145 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 146 |
+
q, conv_state_q = self.q_conv1d(
|
| 147 |
+
x=self.q_proj(hidden_states),
|
| 148 |
+
mask=conv_mask,
|
| 149 |
+
cache=conv_state_q,
|
| 150 |
+
output_final_state=use_cache,
|
| 151 |
+
cu_seqlens=cu_seqlens
|
| 152 |
+
)
|
| 153 |
+
k, conv_state_k = self.k_conv1d(
|
| 154 |
+
x=self.k_proj(hidden_states),
|
| 155 |
+
mask=conv_mask,
|
| 156 |
+
cache=conv_state_k,
|
| 157 |
+
output_final_state=use_cache,
|
| 158 |
+
cu_seqlens=cu_seqlens
|
| 159 |
+
)
|
| 160 |
+
v, conv_state_v = self.v_conv1d(
|
| 161 |
+
x=self.v_proj(hidden_states),
|
| 162 |
+
mask=conv_mask,
|
| 163 |
+
cache=conv_state_v,
|
| 164 |
+
output_final_state=use_cache,
|
| 165 |
+
cu_seqlens=cu_seqlens
|
| 166 |
+
)
|
| 167 |
+
else:
|
| 168 |
+
q = self.q_proj(hidden_states)
|
| 169 |
+
k = self.k_proj(hidden_states)
|
| 170 |
+
v = self.v_proj(hidden_states)
|
| 171 |
+
|
| 172 |
+
if self.use_input_gate:
|
| 173 |
+
q, k, v = map(lambda x: swish(x), (q, k, v))
|
| 174 |
+
# dealing with left-padding
|
| 175 |
+
if attention_mask is not None:
|
| 176 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
| 177 |
+
|
| 178 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
|
| 179 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
| 180 |
+
if self.use_rope:
|
| 181 |
+
seqlen_offset = 0
|
| 182 |
+
if past_key_values is not None:
|
| 183 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
| 184 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset)
|
| 185 |
+
|
| 186 |
+
s = rearrange(self.s_proj(hidden_states), '... (h m) -> ... h m', m=self.num_slots)
|
| 187 |
+
s = s.clamp_(self.clamp_min, self.clamp_max)
|
| 188 |
+
|
| 189 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 190 |
+
o, recurrent_state = chunk_abc(
|
| 191 |
+
q=q,
|
| 192 |
+
k=k,
|
| 193 |
+
v=v,
|
| 194 |
+
s=s,
|
| 195 |
+
initial_state=recurrent_state,
|
| 196 |
+
output_final_state=use_cache,
|
| 197 |
+
head_first=False
|
| 198 |
+
)
|
| 199 |
+
if past_key_values is not None:
|
| 200 |
+
past_key_values.update(
|
| 201 |
+
recurrent_state=recurrent_state,
|
| 202 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
| 203 |
+
layer_idx=self.layer_idx,
|
| 204 |
+
offset=q.shape[1]
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
if self.use_norm and not self.use_output_gate:
|
| 208 |
+
o = self.g_norm(o)
|
| 209 |
+
elif self.use_output_gate:
|
| 210 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
| 211 |
+
o = self.g_norm(o, g) if self.use_norm else swiglu(g, o)
|
| 212 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
| 213 |
+
o = self.o_proj(o)
|
| 214 |
+
|
| 215 |
+
return o, None, past_key_values
|
| 216 |
+
|
| 217 |
+
def state_size(self, seq_len: int = 2048):
|
| 218 |
+
return 2 * self.num_slots * self.hidden_size
|
fla/layers/attn.py
ADDED
|
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import torch.utils.checkpoint
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
from transformers.utils import logging
|
| 15 |
+
|
| 16 |
+
from fla.modules import RMSNorm, RotaryEmbedding
|
| 17 |
+
from fla.ops import parallel_attn, parallel_rectified_attn, parallel_softpick_attn, naive_attn, naive_rectified_attn, naive_softpick_attn
|
| 18 |
+
|
| 19 |
+
if TYPE_CHECKING:
|
| 20 |
+
from fla.models.utils import Cache
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 24 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
| 25 |
+
except ImportError:
|
| 26 |
+
warnings.warn(
|
| 27 |
+
"Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`",
|
| 28 |
+
category=ImportWarning
|
| 29 |
+
)
|
| 30 |
+
flash_attn_func = None
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class Attention(nn.Module):
|
| 36 |
+
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
hidden_size: int = 2048,
|
| 40 |
+
num_heads: int = 32,
|
| 41 |
+
num_kv_heads: Optional[int] = None,
|
| 42 |
+
qkv_bias: bool = False,
|
| 43 |
+
qk_norm: bool = False,
|
| 44 |
+
window_size: Optional[int] = None,
|
| 45 |
+
rope_theta: Optional[float] = 10000.,
|
| 46 |
+
max_position_embeddings: Optional[int] = None,
|
| 47 |
+
layer_idx: int = None,
|
| 48 |
+
attn_impl: str = "flash_attn",
|
| 49 |
+
):
|
| 50 |
+
super().__init__()
|
| 51 |
+
|
| 52 |
+
self.hidden_size = hidden_size
|
| 53 |
+
self.num_heads = num_heads
|
| 54 |
+
if num_kv_heads is None:
|
| 55 |
+
self.num_kv_heads = self.num_heads
|
| 56 |
+
else:
|
| 57 |
+
self.num_kv_heads = num_kv_heads
|
| 58 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
| 59 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 60 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
| 61 |
+
self.qkv_bias = qkv_bias
|
| 62 |
+
self.qk_norm = qk_norm
|
| 63 |
+
|
| 64 |
+
self.window_size = window_size
|
| 65 |
+
self.rope_theta = rope_theta
|
| 66 |
+
self.max_position_embeddings = max_position_embeddings
|
| 67 |
+
self.layer_idx = layer_idx
|
| 68 |
+
self.attn_impl = attn_impl
|
| 69 |
+
|
| 70 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.qkv_bias)
|
| 71 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
| 72 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
| 73 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 74 |
+
|
| 75 |
+
if "scaled" in self.attn_impl:
|
| 76 |
+
self.s = nn.Parameter(torch.empty(self.num_heads, 1))
|
| 77 |
+
self.register_buffer("logn", torch.log(torch.arange(2, self.max_position_embeddings*4+2, dtype=self.s.dtype)[:, None, None]))
|
| 78 |
+
|
| 79 |
+
if qk_norm:
|
| 80 |
+
self.q_norm = RMSNorm(self.head_dim)
|
| 81 |
+
self.k_norm = RMSNorm(self.head_dim)
|
| 82 |
+
|
| 83 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
| 84 |
+
|
| 85 |
+
def reset_parameters(self):
|
| 86 |
+
if "scaled" in self.attn_impl:
|
| 87 |
+
nn.init.constant_(self.s, 0.3)
|
| 88 |
+
self.logn.copy_(torch.log(torch.arange(2, self.max_position_embeddings*4+2, dtype=self.s.dtype)[:, None, None]))
|
| 89 |
+
|
| 90 |
+
def forward(
|
| 91 |
+
self,
|
| 92 |
+
hidden_states: torch.Tensor,
|
| 93 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 94 |
+
past_key_values: Optional[Cache] = None,
|
| 95 |
+
output_attentions: bool = False,
|
| 96 |
+
use_cache: bool = False,
|
| 97 |
+
**kwargs,
|
| 98 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 99 |
+
if attention_mask is not None:
|
| 100 |
+
assert len(attention_mask.shape) == 2, (
|
| 101 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 102 |
+
"for padding purposes (0 indicating padding). "
|
| 103 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 107 |
+
|
| 108 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
| 109 |
+
|
| 110 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
|
| 111 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
| 112 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
| 113 |
+
|
| 114 |
+
if self.qk_norm:
|
| 115 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
| 116 |
+
|
| 117 |
+
# equivalent to cu_seqlens in `flash_attn`
|
| 118 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 119 |
+
|
| 120 |
+
seqlen_offset, max_seqlen = 0, q_len
|
| 121 |
+
if past_key_values is not None:
|
| 122 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
| 123 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
| 124 |
+
|
| 125 |
+
if attention_mask is not None:
|
| 126 |
+
# to deliminate the offsets of padding tokens
|
| 127 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
| 128 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
| 129 |
+
|
| 130 |
+
if self.max_position_embeddings is not None:
|
| 131 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
| 132 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
| 133 |
+
|
| 134 |
+
if past_key_values is not None:
|
| 135 |
+
cache_has_content = past_key_values.get_seq_length(self.layer_idx) > 0
|
| 136 |
+
k_cached, v_cached = past_key_values.update(
|
| 137 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
| 138 |
+
layer_idx=self.layer_idx,
|
| 139 |
+
offset=q_len,
|
| 140 |
+
cache_kwargs=dict(window_size=self.window_size)
|
| 141 |
+
)['attn_state']
|
| 142 |
+
if cache_has_content:
|
| 143 |
+
k, v = k_cached, v_cached
|
| 144 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
| 145 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
| 146 |
+
|
| 147 |
+
# if flash_attn_func is None:
|
| 148 |
+
# raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
|
| 149 |
+
|
| 150 |
+
if "scaled" in self.attn_impl:
|
| 151 |
+
k_len = k.shape[1]
|
| 152 |
+
q = q * self.s.to(q.dtype) * self.logn[k_len-q_len:k_len].to(q.dtype)
|
| 153 |
+
|
| 154 |
+
# Contains at least one padding token in the sequence
|
| 155 |
+
if self.attn_impl == "flash_attn":
|
| 156 |
+
if attention_mask is not None:
|
| 157 |
+
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
|
| 158 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 159 |
+
max_seqlen_q, max_seqlen_k = max_seq_lens
|
| 160 |
+
o = flash_attn_varlen_func(
|
| 161 |
+
q, k, v,
|
| 162 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 163 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 164 |
+
max_seqlen_q=max_seqlen_q,
|
| 165 |
+
max_seqlen_k=max_seqlen_k,
|
| 166 |
+
causal=True,
|
| 167 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 168 |
+
)
|
| 169 |
+
o = pad_input(o, indices_q, batch_size, q_len)
|
| 170 |
+
elif cu_seqlens is not None:
|
| 171 |
+
o = flash_attn_varlen_func(
|
| 172 |
+
q.squeeze(0), k.squeeze(0), v.squeeze(0),
|
| 173 |
+
cu_seqlens_q=cu_seqlens,
|
| 174 |
+
cu_seqlens_k=cu_seqlens,
|
| 175 |
+
max_seqlen_q=max_seqlen,
|
| 176 |
+
max_seqlen_k=max_seqlen,
|
| 177 |
+
causal=True,
|
| 178 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 179 |
+
).unsqueeze(0)
|
| 180 |
+
else:
|
| 181 |
+
o = flash_attn_func(
|
| 182 |
+
q, k, v,
|
| 183 |
+
causal=True,
|
| 184 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 185 |
+
)
|
| 186 |
+
elif self.attn_impl == "parallel_attn":
|
| 187 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 188 |
+
elif self.attn_impl == "parallel_scaled_attn":
|
| 189 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 190 |
+
elif self.attn_impl == "parallel_rectified_attn":
|
| 191 |
+
o = parallel_rectified_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 192 |
+
elif self.attn_impl == "parallel_softpick_attn":
|
| 193 |
+
o = parallel_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 194 |
+
elif self.attn_impl == "parallel_scaled_softpick_attn":
|
| 195 |
+
o = parallel_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 196 |
+
elif self.attn_impl == "naive_attn":
|
| 197 |
+
o, attentions = naive_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 198 |
+
elif self.attn_impl == "naive_scaled_attn":
|
| 199 |
+
o, attentions = naive_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 200 |
+
elif self.attn_impl == "naive_rectified_attn":
|
| 201 |
+
o, attentions = naive_rectified_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 202 |
+
elif self.attn_impl == "naive_softpick_attn":
|
| 203 |
+
o, attentions = naive_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 204 |
+
elif self.attn_impl == "naive_scaled_softpick_attn":
|
| 205 |
+
o, attentions = naive_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 206 |
+
else:
|
| 207 |
+
raise ValueError(f"Unknown attention implementation: {self.attn_impl}")
|
| 208 |
+
|
| 209 |
+
o = o.reshape(batch_size, q_len, -1)
|
| 210 |
+
o = self.o_proj(o)
|
| 211 |
+
|
| 212 |
+
if not output_attentions or "parallel" in self.attn_impl or "flash" in self.attn_impl:
|
| 213 |
+
attentions = None
|
| 214 |
+
|
| 215 |
+
return o, attentions, past_key_values
|
| 216 |
+
|
| 217 |
+
def _upad_input(self, q, k, v, attention_mask, q_len):
|
| 218 |
+
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
|
| 219 |
+
cache_mask = attention_mask[:, -seq_len:]
|
| 220 |
+
seqlens = cache_mask.sum(-1, dtype=torch.int32)
|
| 221 |
+
indices_k = torch.nonzero(cache_mask.flatten(), as_tuple=False).flatten()
|
| 222 |
+
max_seqlen_k = seqlens.max().item()
|
| 223 |
+
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
|
| 224 |
+
|
| 225 |
+
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
| 226 |
+
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
| 227 |
+
if q_len == seq_len:
|
| 228 |
+
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
|
| 229 |
+
cu_seqlens_q = cu_seqlens_k
|
| 230 |
+
max_seqlen_q = max_seqlen_k
|
| 231 |
+
indices_q = indices_k
|
| 232 |
+
elif q_len == 1:
|
| 233 |
+
max_seqlen_q = 1
|
| 234 |
+
# There is a memcpy here, that is very bad.
|
| 235 |
+
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
|
| 236 |
+
indices_q = cu_seqlens_q[:-1]
|
| 237 |
+
q = q.squeeze(1)
|
| 238 |
+
else:
|
| 239 |
+
# The -q_len: slice assumes left padding.
|
| 240 |
+
attention_mask = attention_mask[:, -q_len:]
|
| 241 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
|
| 242 |
+
|
| 243 |
+
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
|
| 244 |
+
|
| 245 |
+
class StochasticSoftpickAttention(nn.Module):
|
| 246 |
+
|
| 247 |
+
def __init__(
|
| 248 |
+
self,
|
| 249 |
+
hidden_size: int = 2048,
|
| 250 |
+
num_heads: int = 32,
|
| 251 |
+
num_kv_heads: Optional[int] = None,
|
| 252 |
+
qkv_bias: bool = False,
|
| 253 |
+
qk_norm: bool = False,
|
| 254 |
+
window_size: Optional[int] = None,
|
| 255 |
+
rope_theta: Optional[float] = 10000.,
|
| 256 |
+
max_position_embeddings: Optional[int] = None,
|
| 257 |
+
layer_idx: int = None,
|
| 258 |
+
attn_impl: str = "flash_attn",
|
| 259 |
+
stochastic_p: float = 0.5,
|
| 260 |
+
):
|
| 261 |
+
super().__init__()
|
| 262 |
+
|
| 263 |
+
self.hidden_size = hidden_size
|
| 264 |
+
self.num_heads = num_heads
|
| 265 |
+
if num_kv_heads is None:
|
| 266 |
+
self.num_kv_heads = self.num_heads
|
| 267 |
+
else:
|
| 268 |
+
self.num_kv_heads = num_kv_heads
|
| 269 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
| 270 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 271 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
| 272 |
+
self.qkv_bias = qkv_bias
|
| 273 |
+
self.qk_norm = qk_norm
|
| 274 |
+
|
| 275 |
+
self.window_size = window_size
|
| 276 |
+
self.rope_theta = rope_theta
|
| 277 |
+
self.max_position_embeddings = max_position_embeddings
|
| 278 |
+
self.layer_idx = layer_idx
|
| 279 |
+
self.attn_impl = attn_impl
|
| 280 |
+
self.stochastic_value = stochastic_p
|
| 281 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.qkv_bias)
|
| 282 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
| 283 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
| 284 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 285 |
+
|
| 286 |
+
if "scaled" in self.attn_impl:
|
| 287 |
+
self.s = nn.Parameter(torch.empty(self.num_heads, 1))
|
| 288 |
+
self.register_buffer("logn", torch.log(torch.arange(2, self.max_position_embeddings*4+2, dtype=self.s.dtype)[:, None, None]))
|
| 289 |
+
|
| 290 |
+
if qk_norm:
|
| 291 |
+
self.q_norm = RMSNorm(self.head_dim)
|
| 292 |
+
self.k_norm = RMSNorm(self.head_dim)
|
| 293 |
+
|
| 294 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
| 295 |
+
|
| 296 |
+
def reset_parameters(self):
|
| 297 |
+
if "scaled" in self.attn_impl:
|
| 298 |
+
nn.init.constant_(self.s, 0.3)
|
| 299 |
+
self.logn.copy_(torch.log(torch.arange(2, self.max_position_embeddings*4+2, dtype=self.s.dtype)[:, None, None]))
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def forward(
|
| 303 |
+
self,
|
| 304 |
+
hidden_states: torch.Tensor,
|
| 305 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 306 |
+
past_key_values: Optional[Cache] = None,
|
| 307 |
+
output_attentions: bool = False,
|
| 308 |
+
use_cache: bool = False,
|
| 309 |
+
**kwargs,
|
| 310 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 311 |
+
if attention_mask is not None:
|
| 312 |
+
assert len(attention_mask.shape) == 2, (
|
| 313 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 314 |
+
"for padding purposes (0 indicating padding). "
|
| 315 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 319 |
+
|
| 320 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
| 321 |
+
|
| 322 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
|
| 323 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
| 324 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
| 325 |
+
|
| 326 |
+
if self.qk_norm:
|
| 327 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
| 328 |
+
|
| 329 |
+
# equivalent to cu_seqlens in `flash_attn`
|
| 330 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 331 |
+
|
| 332 |
+
seqlen_offset, max_seqlen = 0, q_len
|
| 333 |
+
if past_key_values is not None:
|
| 334 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
| 335 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
| 336 |
+
|
| 337 |
+
if attention_mask is not None:
|
| 338 |
+
# to deliminate the offsets of padding tokens
|
| 339 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
| 340 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
| 341 |
+
|
| 342 |
+
if self.max_position_embeddings is not None:
|
| 343 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
| 344 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
| 345 |
+
|
| 346 |
+
if past_key_values is not None:
|
| 347 |
+
cache_has_content = past_key_values.get_seq_length(self.layer_idx) > 0
|
| 348 |
+
k_cached, v_cached = past_key_values.update(
|
| 349 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
| 350 |
+
layer_idx=self.layer_idx,
|
| 351 |
+
offset=q_len,
|
| 352 |
+
cache_kwargs=dict(window_size=self.window_size)
|
| 353 |
+
)['attn_state']
|
| 354 |
+
if cache_has_content:
|
| 355 |
+
k, v = k_cached, v_cached
|
| 356 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
| 357 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
| 358 |
+
|
| 359 |
+
# if flash_attn_func is None:
|
| 360 |
+
# raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
|
| 361 |
+
|
| 362 |
+
if "scaled" in self.attn_impl:
|
| 363 |
+
k_len = k.shape[1]
|
| 364 |
+
q = q * self.s.to(q.dtype) * self.logn[k_len-q_len:k_len].to(q.dtype)
|
| 365 |
+
|
| 366 |
+
# Contains at least one padding token in the sequence
|
| 367 |
+
|
| 368 |
+
p = torch.rand(1, device=q.device)
|
| 369 |
+
stochastic_p = torch.tensor(self.stochastic_value, dtype=torch.float32, device=q.device)
|
| 370 |
+
cond = torch.where(p < stochastic_p, torch.tensor(1, dtype=torch.bool, device=q.device), torch.tensor(0, dtype=torch.bool, device=q.device))
|
| 371 |
+
if self.attn_impl == "flash_attn":
|
| 372 |
+
if attention_mask is not None:
|
| 373 |
+
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
|
| 374 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 375 |
+
max_seqlen_q, max_seqlen_k = max_seq_lens
|
| 376 |
+
o = flash_attn_varlen_func(
|
| 377 |
+
q, k, v,
|
| 378 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 379 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 380 |
+
max_seqlen_q=max_seqlen_q,
|
| 381 |
+
max_seqlen_k=max_seqlen_k,
|
| 382 |
+
causal=True,
|
| 383 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 384 |
+
)
|
| 385 |
+
o = pad_input(o, indices_q, batch_size, q_len)
|
| 386 |
+
elif cu_seqlens is not None:
|
| 387 |
+
o = flash_attn_varlen_func(
|
| 388 |
+
q.squeeze(0), k.squeeze(0), v.squeeze(0),
|
| 389 |
+
cu_seqlens_q=cu_seqlens,
|
| 390 |
+
cu_seqlens_k=cu_seqlens,
|
| 391 |
+
max_seqlen_q=max_seqlen,
|
| 392 |
+
max_seqlen_k=max_seqlen,
|
| 393 |
+
causal=True,
|
| 394 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 395 |
+
).unsqueeze(0)
|
| 396 |
+
else:
|
| 397 |
+
o = flash_attn_func(
|
| 398 |
+
q, k, v,
|
| 399 |
+
causal=True,
|
| 400 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
elif self.attn_impl == "parallel_attn":
|
| 404 |
+
if cond:
|
| 405 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 406 |
+
else:
|
| 407 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 408 |
+
elif self.attn_impl == "parallel_scaled_attn":
|
| 409 |
+
if cond:
|
| 410 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 411 |
+
else:
|
| 412 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 413 |
+
elif self.attn_impl == "parallel_rectified_attn":
|
| 414 |
+
if cond:
|
| 415 |
+
o = parallel_rectified_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 416 |
+
else:
|
| 417 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 418 |
+
elif self.attn_impl == "parallel_softpick_attn":
|
| 419 |
+
if cond:
|
| 420 |
+
o = parallel_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 421 |
+
else:
|
| 422 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 423 |
+
elif self.attn_impl == "parallel_scaled_softpick_attn":
|
| 424 |
+
if cond:
|
| 425 |
+
o = parallel_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 426 |
+
else:
|
| 427 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 428 |
+
elif self.attn_impl == "naive_attn":
|
| 429 |
+
if cond:
|
| 430 |
+
o, attentions = naive_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 431 |
+
else:
|
| 432 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 433 |
+
elif self.attn_impl == "naive_scaled_attn":
|
| 434 |
+
if cond:
|
| 435 |
+
o, attentions = naive_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 436 |
+
else:
|
| 437 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 438 |
+
elif self.attn_impl == "naive_rectified_attn":
|
| 439 |
+
if cond:
|
| 440 |
+
o, attentions = naive_rectified_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 441 |
+
else:
|
| 442 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 443 |
+
elif self.attn_impl == "naive_softpick_attn":
|
| 444 |
+
if cond:
|
| 445 |
+
o, attentions = naive_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 446 |
+
else:
|
| 447 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 448 |
+
elif self.attn_impl == "naive_scaled_softpick_attn":
|
| 449 |
+
if cond:
|
| 450 |
+
o, attentions = naive_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 451 |
+
else:
|
| 452 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
| 453 |
+
else:
|
| 454 |
+
raise ValueError(f"Unknown attention implementation: {self.attn_impl}")
|
| 455 |
+
|
| 456 |
+
o = o.reshape(batch_size, q_len, -1)
|
| 457 |
+
o = self.o_proj(o)
|
| 458 |
+
|
| 459 |
+
if not output_attentions or "parallel" in self.attn_impl or "flash" in self.attn_impl:
|
| 460 |
+
attentions = None
|
| 461 |
+
|
| 462 |
+
return o, attentions, past_key_values
|
| 463 |
+
|
| 464 |
+
def _upad_input(self, q, k, v, attention_mask, q_len):
|
| 465 |
+
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
|
| 466 |
+
cache_mask = attention_mask[:, -seq_len:]
|
| 467 |
+
seqlens = cache_mask.sum(-1, dtype=torch.int32)
|
| 468 |
+
indices_k = torch.nonzero(cache_mask.flatten(), as_tuple=False).flatten()
|
| 469 |
+
max_seqlen_k = seqlens.max().item()
|
| 470 |
+
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
|
| 471 |
+
|
| 472 |
+
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
| 473 |
+
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
| 474 |
+
if q_len == seq_len:
|
| 475 |
+
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
|
| 476 |
+
cu_seqlens_q = cu_seqlens_k
|
| 477 |
+
max_seqlen_q = max_seqlen_k
|
| 478 |
+
indices_q = indices_k
|
| 479 |
+
elif q_len == 1:
|
| 480 |
+
max_seqlen_q = 1
|
| 481 |
+
# There is a memcpy here, that is very bad.
|
| 482 |
+
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
|
| 483 |
+
indices_q = cu_seqlens_q[:-1]
|
| 484 |
+
q = q.squeeze(1)
|
| 485 |
+
else:
|
| 486 |
+
# The -q_len: slice assumes left padding.
|
| 487 |
+
attention_mask = attention_mask[:, -q_len:]
|
| 488 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
|
| 489 |
+
|
| 490 |
+
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
|
fla/layers/based.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
Linear attention in Based.
|
| 6 |
+
https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
|
| 13 |
+
from fla.modules.feature_map import TaylorFeatureMap
|
| 14 |
+
from fla.ops.based import parallel_based
|
| 15 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class BasedLinearAttention(nn.Module):
|
| 19 |
+
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
hidden_size: int,
|
| 23 |
+
feature_dim: int = 16,
|
| 24 |
+
num_key_value_heads: int = 12,
|
| 25 |
+
num_heads: int = 12,
|
| 26 |
+
feature_name: str = "taylor_exp",
|
| 27 |
+
eps: float = 1e-12,
|
| 28 |
+
causal: bool = True,
|
| 29 |
+
mode: str = "parallel",
|
| 30 |
+
):
|
| 31 |
+
super().__init__()
|
| 32 |
+
|
| 33 |
+
self.hidden_size = hidden_size
|
| 34 |
+
self.mode = mode
|
| 35 |
+
self.feature_name = feature_name
|
| 36 |
+
self.feature_dim = feature_dim
|
| 37 |
+
self.num_key_value_heads = num_key_value_heads
|
| 38 |
+
self.num_heads = num_heads
|
| 39 |
+
self.head_dim = self.hidden_size // self.num_key_value_heads
|
| 40 |
+
assert self.hidden_size % self.head_dim == 0
|
| 41 |
+
self.causal = causal
|
| 42 |
+
|
| 43 |
+
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
| 44 |
+
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
| 45 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 46 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 47 |
+
self.dropout = nn.Identity()
|
| 48 |
+
self.feature_map = TaylorFeatureMap(feature_dim)
|
| 49 |
+
self.eps = eps
|
| 50 |
+
|
| 51 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
| 52 |
+
mode = self.mode
|
| 53 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
| 54 |
+
q, k, v = map(lambda x: rearrange(x, "... (h d) -> ... h d", d=self.head_dim), [q, k, v])
|
| 55 |
+
if mode == "fused_chunk":
|
| 56 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
| 57 |
+
o, _ = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1, head_first=False)
|
| 58 |
+
elif mode == 'chunk':
|
| 59 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
| 60 |
+
o, _ = chunk_linear_attn(q, k, v, normalize=True, scale=1, head_first=False)
|
| 61 |
+
elif mode == 'parallel':
|
| 62 |
+
assert q.shape[-1] <= 128
|
| 63 |
+
o = parallel_based(q, k, v, scale=1, use_norm=True, head_first=False)
|
| 64 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
| 65 |
+
o = self.o_proj(o)
|
| 66 |
+
o = self.dropout(o)
|
| 67 |
+
return o
|
| 68 |
+
|
| 69 |
+
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
| 70 |
+
|
| 71 |
+
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
|
| 72 |
+
"""
|
| 73 |
+
x (torch.Tensor): tensor of shape (b, d, t)
|
| 74 |
+
y (torch.Tensor): tensor of shape (b, d, t)
|
| 75 |
+
"""
|
| 76 |
+
# hidden_states = hidden_states.transpose(1, 2)
|
| 77 |
+
b, t, _ = hidden_states.size()
|
| 78 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
| 79 |
+
|
| 80 |
+
q = q.view(b, t, self.num_heads, self.feature_dim).transpose(1, 2)
|
| 81 |
+
k = k.view(b, t, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
|
| 82 |
+
v = v.view(b, t, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 83 |
+
|
| 84 |
+
# Linear attention
|
| 85 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
| 86 |
+
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
| 87 |
+
|
| 88 |
+
# Compute attention
|
| 89 |
+
if self.causal:
|
| 90 |
+
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
| 91 |
+
else:
|
| 92 |
+
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
| 93 |
+
y = rearrange(y, 'b h t d -> b t (h d)')
|
| 94 |
+
y = self.o_proj(y.to(hidden_states.dtype))
|
| 95 |
+
y = self.dropout(y)
|
| 96 |
+
return y.to(hidden_states.dtype)
|
fla/layers/bitattn.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import torch.utils.checkpoint
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
from transformers.utils import logging
|
| 15 |
+
|
| 16 |
+
from fla.modules import RotaryEmbedding
|
| 17 |
+
from fla.modules.fused_bitlinear import FusedBitLinear
|
| 18 |
+
|
| 19 |
+
if TYPE_CHECKING:
|
| 20 |
+
from fla.models.utils import Cache
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 24 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
| 25 |
+
except ImportError:
|
| 26 |
+
warnings.warn(
|
| 27 |
+
"Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`",
|
| 28 |
+
category=ImportWarning
|
| 29 |
+
)
|
| 30 |
+
flash_attn_func = None
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class BitAttention(nn.Module):
|
| 36 |
+
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
hidden_size: int = 2048,
|
| 40 |
+
num_heads: int = 32,
|
| 41 |
+
num_kv_heads: Optional[int] = None,
|
| 42 |
+
window_size: Optional[int] = None,
|
| 43 |
+
rope_theta: Optional[float] = 10000.,
|
| 44 |
+
max_position_embeddings: Optional[int] = None,
|
| 45 |
+
norm_eps: float = 1e-5,
|
| 46 |
+
layer_idx: int = None
|
| 47 |
+
):
|
| 48 |
+
super().__init__()
|
| 49 |
+
|
| 50 |
+
self.num_heads = num_heads
|
| 51 |
+
if num_kv_heads is None:
|
| 52 |
+
self.num_kv_heads = self.num_heads
|
| 53 |
+
else:
|
| 54 |
+
self.num_kv_heads = num_kv_heads
|
| 55 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
| 56 |
+
self.hidden_size = hidden_size
|
| 57 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 58 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
| 59 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
| 60 |
+
self.window_size = window_size
|
| 61 |
+
self.rope_theta = rope_theta
|
| 62 |
+
self.max_position_embeddings = max_position_embeddings
|
| 63 |
+
self.layer_idx = layer_idx
|
| 64 |
+
|
| 65 |
+
self.q_proj = FusedBitLinear(self.hidden_size, self.hidden_size, bias=False)
|
| 66 |
+
self.k_proj = FusedBitLinear(self.hidden_size, self.kv_dim, bias=False)
|
| 67 |
+
self.v_proj = FusedBitLinear(self.hidden_size, self.kv_dim, bias=False)
|
| 68 |
+
self.o_proj = FusedBitLinear(self.hidden_size, self.hidden_size, bias=False)
|
| 69 |
+
|
| 70 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
| 71 |
+
|
| 72 |
+
def forward(
|
| 73 |
+
self,
|
| 74 |
+
hidden_states: torch.Tensor,
|
| 75 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 76 |
+
past_key_values: Optional[Cache] = None,
|
| 77 |
+
output_attentions: bool = False,
|
| 78 |
+
use_cache: bool = False,
|
| 79 |
+
**kwargs,
|
| 80 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 81 |
+
if attention_mask is not None:
|
| 82 |
+
assert len(attention_mask.shape) == 2, (
|
| 83 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 84 |
+
"for padding purposes (0 indicating padding). "
|
| 85 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 89 |
+
|
| 90 |
+
q = rearrange(self.q_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
| 91 |
+
k = rearrange(self.k_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
| 92 |
+
v = rearrange(self.v_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
| 93 |
+
|
| 94 |
+
# equivalent to cu_seqlens in `flash_attn`
|
| 95 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 96 |
+
|
| 97 |
+
seqlen_offset, max_seqlen = 0, q_len
|
| 98 |
+
if past_key_values is not None:
|
| 99 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
| 100 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
| 101 |
+
|
| 102 |
+
if attention_mask is not None:
|
| 103 |
+
# to deliminate the offsets of padding tokens
|
| 104 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
| 105 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
| 106 |
+
|
| 107 |
+
if self.max_position_embeddings is not None:
|
| 108 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
| 109 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
| 110 |
+
|
| 111 |
+
if past_key_values is not None:
|
| 112 |
+
cache_has_content = past_key_values.get_seq_length(self.layer_idx) > 0
|
| 113 |
+
k_cached, v_cached = past_key_values.update(
|
| 114 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
| 115 |
+
layer_idx=self.layer_idx,
|
| 116 |
+
offset=q_len,
|
| 117 |
+
cache_kwargs=dict(window_size=self.window_size)
|
| 118 |
+
)['attn_state']
|
| 119 |
+
if cache_has_content:
|
| 120 |
+
k, v = k_cached, v_cached
|
| 121 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
| 122 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
| 123 |
+
|
| 124 |
+
if flash_attn_func is None:
|
| 125 |
+
raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
|
| 126 |
+
|
| 127 |
+
# Contains at least one padding token in the sequence
|
| 128 |
+
if attention_mask is not None:
|
| 129 |
+
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
|
| 130 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 131 |
+
max_seqlen_q, max_seqlen_k = max_seq_lens
|
| 132 |
+
o = flash_attn_varlen_func(
|
| 133 |
+
q, k, v,
|
| 134 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 135 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 136 |
+
max_seqlen_q=max_seqlen_q,
|
| 137 |
+
max_seqlen_k=max_seqlen_k,
|
| 138 |
+
causal=True,
|
| 139 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 140 |
+
)
|
| 141 |
+
o = pad_input(o, indices_q, batch_size, q_len)
|
| 142 |
+
elif cu_seqlens is not None:
|
| 143 |
+
o = flash_attn_varlen_func(
|
| 144 |
+
q.squeeze(0), k.squeeze(0), v.squeeze(0),
|
| 145 |
+
cu_seqlens_q=cu_seqlens,
|
| 146 |
+
cu_seqlens_k=cu_seqlens,
|
| 147 |
+
max_seqlen_q=max_seqlen,
|
| 148 |
+
max_seqlen_k=max_seqlen,
|
| 149 |
+
causal=True,
|
| 150 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 151 |
+
).unsqueeze(0)
|
| 152 |
+
else:
|
| 153 |
+
o = flash_attn_func(
|
| 154 |
+
q, k, v,
|
| 155 |
+
causal=True,
|
| 156 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
| 157 |
+
)
|
| 158 |
+
o = o.reshape(batch_size, q_len, -1)
|
| 159 |
+
o = self.o_proj(o)
|
| 160 |
+
|
| 161 |
+
if not output_attentions:
|
| 162 |
+
attentions = None
|
| 163 |
+
|
| 164 |
+
return o, attentions, past_key_values
|
| 165 |
+
|
| 166 |
+
def _upad_input(self, q, k, v, attention_mask, q_len):
|
| 167 |
+
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
|
| 168 |
+
cache_mask = attention_mask[:, -seq_len:]
|
| 169 |
+
seqlens = cache_mask.sum(-1, dtype=torch.int32)
|
| 170 |
+
indices_k = torch.nonzero(cache_mask.flatten(), as_tuple=False).flatten()
|
| 171 |
+
max_seqlen_k = seqlens.max().item()
|
| 172 |
+
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
|
| 173 |
+
|
| 174 |
+
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
| 175 |
+
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
| 176 |
+
if q_len == seq_len:
|
| 177 |
+
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
|
| 178 |
+
cu_seqlens_q = cu_seqlens_k
|
| 179 |
+
max_seqlen_q = max_seqlen_k
|
| 180 |
+
indices_q = indices_k
|
| 181 |
+
elif q_len == 1:
|
| 182 |
+
max_seqlen_q = 1
|
| 183 |
+
# There is a memcpy here, that is very bad.
|
| 184 |
+
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
|
| 185 |
+
indices_q = cu_seqlens_q[:-1]
|
| 186 |
+
q = q.squeeze(1)
|
| 187 |
+
else:
|
| 188 |
+
# The -q_len: slice assumes left padding.
|
| 189 |
+
attention_mask = attention_mask[:, -q_len:]
|
| 190 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
|
| 191 |
+
|
| 192 |
+
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
|
fla/layers/delta_net.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from torch.nn import functional as F
|
| 12 |
+
|
| 13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
| 14 |
+
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule
|
| 15 |
+
|
| 16 |
+
if TYPE_CHECKING:
|
| 17 |
+
from transformers.processing_utils import Unpack
|
| 18 |
+
|
| 19 |
+
from fla.models.utils import Cache
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def elu_p1(x):
|
| 23 |
+
return (F.elu(x, 1., False) + 1.).to(x)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def sum_norm(x):
|
| 27 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class DeltaNet(nn.Module):
|
| 31 |
+
r"""
|
| 32 |
+
The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484). # noqa:
|
| 33 |
+
DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
mode (str, Optional):
|
| 37 |
+
Which DeltaNet kernel to use.
|
| 38 |
+
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
| 39 |
+
Default: `chunk`.
|
| 40 |
+
hidden_size (int, Optional):
|
| 41 |
+
The hidden size of the input. Default: 1024.
|
| 42 |
+
expand_k (float, Optional):
|
| 43 |
+
The expansion ratio for the key dim. Default: 1.0.
|
| 44 |
+
expand_v (float, Optional):
|
| 45 |
+
The expansion ratio for the value dim. Default: 1.0.
|
| 46 |
+
num_heads (int, Optional):
|
| 47 |
+
The number of heads. Default: 4.
|
| 48 |
+
use_beta (bool, Optional):
|
| 49 |
+
Whether to use beta. Default: `True`.
|
| 50 |
+
use_gate (bool, Optional):
|
| 51 |
+
Whether to use output gate. Default: `False`.
|
| 52 |
+
use_short_conv (bool, Optional):
|
| 53 |
+
Whether to use short convolutions. Default: `True`.
|
| 54 |
+
conv_size (int, Optional):
|
| 55 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
| 56 |
+
conv_bias (bool, Optional):
|
| 57 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
| 58 |
+
allow_neg_eigval (bool, Optional):
|
| 59 |
+
Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
|
| 60 |
+
See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
|
| 61 |
+
layer_idx (int, Optional):
|
| 62 |
+
The index of the layer. Default: None.
|
| 63 |
+
norm_eps (float, Optional):
|
| 64 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
| 65 |
+
qk_activation (str, Optional):
|
| 66 |
+
The activation function for the query and key. Default: `silu`.
|
| 67 |
+
qk_norm (str, Optional):
|
| 68 |
+
The normalization method for the query and key. Default: `l2`.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
def __init__(
|
| 72 |
+
self,
|
| 73 |
+
mode: str = 'chunk',
|
| 74 |
+
d_model: int = None,
|
| 75 |
+
hidden_size: int = 1024,
|
| 76 |
+
expand_k: float = 1.0,
|
| 77 |
+
expand_v: float = 1.0,
|
| 78 |
+
num_heads: int = 4,
|
| 79 |
+
use_beta: bool = True,
|
| 80 |
+
use_gate: bool = False,
|
| 81 |
+
use_short_conv: bool = True,
|
| 82 |
+
conv_size: int = 4,
|
| 83 |
+
conv_bias: bool = False,
|
| 84 |
+
allow_neg_eigval: bool = False,
|
| 85 |
+
layer_idx: int = None,
|
| 86 |
+
qk_activation: str = 'silu',
|
| 87 |
+
qk_norm: str = 'l2',
|
| 88 |
+
norm_eps: float = 1e-5,
|
| 89 |
+
**kwargs
|
| 90 |
+
) -> DeltaNet:
|
| 91 |
+
super().__init__()
|
| 92 |
+
|
| 93 |
+
self.mode = mode
|
| 94 |
+
self.qk_activation = qk_activation
|
| 95 |
+
self.qk_norm = qk_norm
|
| 96 |
+
|
| 97 |
+
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
|
| 98 |
+
assert self.qk_norm in ['l2', 'sum']
|
| 99 |
+
|
| 100 |
+
if d_model is not None:
|
| 101 |
+
hidden_size = d_model
|
| 102 |
+
self.hidden_size = hidden_size
|
| 103 |
+
self.expand_k = expand_k
|
| 104 |
+
self.expand_v = expand_v
|
| 105 |
+
self.num_heads = num_heads
|
| 106 |
+
self.use_gate = use_gate
|
| 107 |
+
self.use_short_conv = use_short_conv
|
| 108 |
+
self.conv_size = conv_size
|
| 109 |
+
self.conv_bias = conv_bias
|
| 110 |
+
self.allow_neg_eigval = allow_neg_eigval
|
| 111 |
+
|
| 112 |
+
self.key_dim = int(hidden_size * expand_k)
|
| 113 |
+
self.value_dim = int(hidden_size * expand_v)
|
| 114 |
+
self.head_k_dim = self.key_dim // num_heads
|
| 115 |
+
self.head_v_dim = self.value_dim // num_heads
|
| 116 |
+
self.layer_idx = layer_idx
|
| 117 |
+
|
| 118 |
+
self.silu = nn.SiLU()
|
| 119 |
+
if mode == 'fused_chunk':
|
| 120 |
+
raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.")
|
| 121 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
| 122 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
| 123 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
| 124 |
+
|
| 125 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 126 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 127 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 128 |
+
|
| 129 |
+
self.use_beta = use_beta
|
| 130 |
+
if self.use_beta:
|
| 131 |
+
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
| 132 |
+
if use_short_conv:
|
| 133 |
+
self.conv_size = conv_size
|
| 134 |
+
self.q_conv1d = ShortConvolution(
|
| 135 |
+
hidden_size=self.key_dim,
|
| 136 |
+
kernel_size=conv_size,
|
| 137 |
+
activation='silu' if qk_activation == 'silu' else None
|
| 138 |
+
)
|
| 139 |
+
self.k_conv1d = ShortConvolution(
|
| 140 |
+
hidden_size=self.key_dim,
|
| 141 |
+
kernel_size=conv_size,
|
| 142 |
+
activation='silu' if qk_activation == 'silu' else None
|
| 143 |
+
)
|
| 144 |
+
self.v_conv1d = ShortConvolution(
|
| 145 |
+
hidden_size=self.value_dim,
|
| 146 |
+
kernel_size=conv_size,
|
| 147 |
+
activation='silu'
|
| 148 |
+
)
|
| 149 |
+
else:
|
| 150 |
+
raise UserWarning(
|
| 151 |
+
"ShortConvolution is crucial to the performance. "
|
| 152 |
+
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
|
| 153 |
+
)
|
| 154 |
+
if use_gate:
|
| 155 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 156 |
+
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
|
| 157 |
+
else:
|
| 158 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
| 159 |
+
|
| 160 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
| 161 |
+
|
| 162 |
+
def forward(
|
| 163 |
+
self,
|
| 164 |
+
hidden_states: torch.Tensor,
|
| 165 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 166 |
+
past_key_values: Optional[Cache] = None,
|
| 167 |
+
use_cache: Optional[bool] = False,
|
| 168 |
+
output_attentions: Optional[bool] = False,
|
| 169 |
+
**kwargs: Unpack[Dict]
|
| 170 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 171 |
+
if attention_mask is not None:
|
| 172 |
+
assert len(attention_mask.shape) == 2, (
|
| 173 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 174 |
+
"for padding purposes (0 indicating padding). "
|
| 175 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# change to inference mode.
|
| 179 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 180 |
+
|
| 181 |
+
last_state = None
|
| 182 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 183 |
+
last_state = past_key_values[self.layer_idx]
|
| 184 |
+
|
| 185 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 186 |
+
if self.use_short_conv:
|
| 187 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 188 |
+
if last_state is not None:
|
| 189 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
| 190 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 191 |
+
q, conv_state_q = self.q_conv1d(
|
| 192 |
+
x=self.q_proj(hidden_states),
|
| 193 |
+
mask=conv_mask,
|
| 194 |
+
cache=conv_state_q,
|
| 195 |
+
output_final_state=use_cache,
|
| 196 |
+
cu_seqlens=cu_seqlens
|
| 197 |
+
)
|
| 198 |
+
k, conv_state_k = self.k_conv1d(
|
| 199 |
+
x=self.k_proj(hidden_states),
|
| 200 |
+
mask=conv_mask,
|
| 201 |
+
cache=conv_state_k,
|
| 202 |
+
output_final_state=use_cache,
|
| 203 |
+
cu_seqlens=cu_seqlens
|
| 204 |
+
)
|
| 205 |
+
v, conv_state_v = self.v_conv1d(
|
| 206 |
+
x=self.v_proj(hidden_states),
|
| 207 |
+
mask=conv_mask,
|
| 208 |
+
cache=conv_state_v,
|
| 209 |
+
output_final_state=use_cache,
|
| 210 |
+
cu_seqlens=cu_seqlens
|
| 211 |
+
)
|
| 212 |
+
else:
|
| 213 |
+
q = self.q_proj(hidden_states)
|
| 214 |
+
k = self.k_proj(hidden_states)
|
| 215 |
+
if self.qk_activation == 'silu':
|
| 216 |
+
q, k = self.silu(q), self.silu(k)
|
| 217 |
+
v = self.silu(self.v_proj(hidden_states))
|
| 218 |
+
|
| 219 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
|
| 220 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
| 221 |
+
if self.qk_activation != 'silu':
|
| 222 |
+
if self.qk_activation == 'relu':
|
| 223 |
+
q, k = q.relu(), k.relu()
|
| 224 |
+
elif self.qk_activation == 'elu':
|
| 225 |
+
q, k = elu_p1(q), elu_p1(k)
|
| 226 |
+
elif self.qk_activation == 'identity':
|
| 227 |
+
pass
|
| 228 |
+
else:
|
| 229 |
+
raise NotImplementedError
|
| 230 |
+
|
| 231 |
+
if self.qk_norm == 'sum':
|
| 232 |
+
q = sum_norm(q).to(q)
|
| 233 |
+
k = sum_norm(k).to(k)
|
| 234 |
+
|
| 235 |
+
if self.use_beta:
|
| 236 |
+
beta = self.b_proj(hidden_states).sigmoid()
|
| 237 |
+
else:
|
| 238 |
+
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
|
| 239 |
+
|
| 240 |
+
if self.allow_neg_eigval:
|
| 241 |
+
beta = beta * 2.
|
| 242 |
+
|
| 243 |
+
# dealing with padding
|
| 244 |
+
if attention_mask is not None:
|
| 245 |
+
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
|
| 246 |
+
|
| 247 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 248 |
+
if mode == 'fused_recurrent':
|
| 249 |
+
o, recurrent_state = fused_recurrent_delta_rule(
|
| 250 |
+
q=q,
|
| 251 |
+
k=k,
|
| 252 |
+
v=v,
|
| 253 |
+
beta=beta,
|
| 254 |
+
initial_state=recurrent_state,
|
| 255 |
+
output_final_state=use_cache,
|
| 256 |
+
cu_seqlens=cu_seqlens,
|
| 257 |
+
head_first=False,
|
| 258 |
+
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
|
| 259 |
+
)
|
| 260 |
+
elif mode == 'chunk':
|
| 261 |
+
o, recurrent_state = chunk_delta_rule(
|
| 262 |
+
q=q,
|
| 263 |
+
k=k,
|
| 264 |
+
v=v,
|
| 265 |
+
beta=beta,
|
| 266 |
+
initial_state=recurrent_state,
|
| 267 |
+
output_final_state=use_cache,
|
| 268 |
+
cu_seqlens=cu_seqlens,
|
| 269 |
+
head_first=False,
|
| 270 |
+
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
|
| 271 |
+
)
|
| 272 |
+
else:
|
| 273 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 274 |
+
|
| 275 |
+
if past_key_values is not None:
|
| 276 |
+
past_key_values.update(
|
| 277 |
+
recurrent_state=recurrent_state,
|
| 278 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
| 279 |
+
layer_idx=self.layer_idx,
|
| 280 |
+
offset=q.shape[1]
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
if self.use_gate:
|
| 284 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
| 285 |
+
o = self.o_norm(o, g)
|
| 286 |
+
else:
|
| 287 |
+
o = self.o_norm(o)
|
| 288 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
| 289 |
+
o = self.o_proj(o)
|
| 290 |
+
|
| 291 |
+
return o, None, past_key_values
|
fla/layers/forgetting_attn.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
from transformers.utils import logging
|
| 14 |
+
|
| 15 |
+
from fla.modules import GroupNorm
|
| 16 |
+
from fla.ops.forgetting_attn.parallel import parallel_forgetting_attn
|
| 17 |
+
|
| 18 |
+
if TYPE_CHECKING:
|
| 19 |
+
from fla.models.utils import Cache
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class ForgettingAttention(nn.Module):
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
hidden_size: int = 2048,
|
| 30 |
+
num_heads: int = 32,
|
| 31 |
+
num_kv_heads: Optional[int] = None,
|
| 32 |
+
qkv_bias: bool = False,
|
| 33 |
+
qk_norm: bool = False,
|
| 34 |
+
window_size: Optional[int] = None,
|
| 35 |
+
use_output_gate: bool = False,
|
| 36 |
+
layer_idx: int = None
|
| 37 |
+
):
|
| 38 |
+
super().__init__()
|
| 39 |
+
|
| 40 |
+
self.hidden_size = hidden_size
|
| 41 |
+
self.num_heads = num_heads
|
| 42 |
+
if num_kv_heads is None:
|
| 43 |
+
self.num_kv_heads = self.num_heads
|
| 44 |
+
else:
|
| 45 |
+
self.num_kv_heads = num_kv_heads
|
| 46 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
| 47 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 48 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
| 49 |
+
self.qkv_bias = qkv_bias
|
| 50 |
+
self.qk_norm = qk_norm
|
| 51 |
+
|
| 52 |
+
self.window_size = window_size
|
| 53 |
+
self.use_output_gate = use_output_gate
|
| 54 |
+
self.layer_idx = layer_idx
|
| 55 |
+
|
| 56 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.qkv_bias)
|
| 57 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
| 58 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
| 59 |
+
self.f_proj = nn.Linear(self.hidden_size, self.num_heads, bias=True)
|
| 60 |
+
|
| 61 |
+
if use_output_gate:
|
| 62 |
+
self.g_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 63 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 64 |
+
|
| 65 |
+
if qk_norm:
|
| 66 |
+
self.q_norm = GroupNorm(
|
| 67 |
+
num_groups=self.num_heads,
|
| 68 |
+
hidden_size=self.hidden_size,
|
| 69 |
+
is_rms_norm=True,
|
| 70 |
+
)
|
| 71 |
+
self.k_norm = GroupNorm(
|
| 72 |
+
num_groups=self.num_kv_heads,
|
| 73 |
+
hidden_size=self.kv_dim,
|
| 74 |
+
is_rms_norm=True,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def forward(
|
| 78 |
+
self,
|
| 79 |
+
hidden_states: torch.Tensor,
|
| 80 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 81 |
+
past_key_values: Optional[Cache] = None,
|
| 82 |
+
output_attentions: bool = False,
|
| 83 |
+
use_cache: bool = False,
|
| 84 |
+
**kwargs,
|
| 85 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 86 |
+
if attention_mask is not None:
|
| 87 |
+
assert len(attention_mask.shape) == 2, (
|
| 88 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 89 |
+
"for padding purposes (0 indicating padding). "
|
| 90 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 94 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
| 95 |
+
f = F.logsigmoid(self.f_proj(hidden_states).float())
|
| 96 |
+
if self.qk_norm:
|
| 97 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
| 98 |
+
|
| 99 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
|
| 100 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
| 101 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
| 102 |
+
|
| 103 |
+
o = parallel_forgetting_attn(q, k, v, f, cu_seqlens=cu_seqlens)
|
| 104 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
| 105 |
+
if self.use_output_gate:
|
| 106 |
+
o = self.g_proj(hidden_states).sigmoid() * o
|
| 107 |
+
o = self.o_proj(o)
|
| 108 |
+
|
| 109 |
+
return o, None, past_key_values
|
fla/layers/gated_deltanet.py
ADDED
|
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
from torch.nn import functional as F
|
| 13 |
+
|
| 14 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
| 15 |
+
from fla.ops.gated_delta_rule import chunk_gated_delta_rule, fused_recurrent_gated_delta_rule
|
| 16 |
+
|
| 17 |
+
if TYPE_CHECKING:
|
| 18 |
+
from transformers.processing_utils import Unpack
|
| 19 |
+
|
| 20 |
+
from fla.models.utils import Cache
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@torch.compile
|
| 24 |
+
def elu_p1(x):
|
| 25 |
+
return (F.elu(x, 1., False) + 1.).to(x)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
@torch.compile
|
| 29 |
+
def sum_norm(x):
|
| 30 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class GatedDeltaNet(nn.Module):
|
| 34 |
+
"""
|
| 35 |
+
The layer implementaion for [Gated Delta Networks: Improving Mamba2 with Delta Rule](https://arxiv.org/abs/2412.06464). # noqa
|
| 36 |
+
|
| 37 |
+
Similar to Mamba2, each layer contains around 6*hidden_size*hidden_size parameters.
|
| 38 |
+
|
| 39 |
+
Parameter alloation when use_gate=True:
|
| 40 |
+
- 0.75 * hidden_size * hidden_size for the q_proj and k_proj each
|
| 41 |
+
- 1.5 * hidden_size * hidden_size for the v_proj, g_proj and o_proj each
|
| 42 |
+
- Others are ignorably small.
|
| 43 |
+
- In total = 0.75 * 2 + 1.5 * 3 = 6 * hidden_size * hidden_size
|
| 44 |
+
NOTE: num_heads * head_dim = 0.75 * hidden_size, please make sure to set the correct num_heads and head_dim.
|
| 45 |
+
|
| 46 |
+
Parameter allocation when use_gate=False:
|
| 47 |
+
- 1 * hidden_size * hidden_size for the q_proj and k_proj each
|
| 48 |
+
- 2 * hidden_size * hidden_size for the v_proj and o_proj each
|
| 49 |
+
- Others are ignorably small.
|
| 50 |
+
- In total = 1 * 2 + 2 * 2 = 6 * hidden_size * hidden_size
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
hidden_size (int, Optional):
|
| 54 |
+
The hidden size of the input. Default: 2048.
|
| 55 |
+
expand_v (float, Optional):
|
| 56 |
+
The expansion ratio for the value dim. Default: 2.0.
|
| 57 |
+
head_dim (int, Optional):
|
| 58 |
+
The dimension of each head. Default: 256.
|
| 59 |
+
num_heads (int, Optional):
|
| 60 |
+
The number of heads. Default: 4.
|
| 61 |
+
mode (str, Optional):
|
| 62 |
+
Which Gated DeltaNet kernel to use.
|
| 63 |
+
Currently available: `chunk` and `fused_recurrent`.
|
| 64 |
+
Default: `chunk`.
|
| 65 |
+
use_beta (bool, Optional):
|
| 66 |
+
Whether to use beta. Default: `True`.
|
| 67 |
+
use_gate (bool, Optional):
|
| 68 |
+
Whether to use output gate. Default: `True`.
|
| 69 |
+
use_short_conv (bool, Optional):
|
| 70 |
+
Whether to use short convolutions. Default: `True`.
|
| 71 |
+
conv_size (int, Optional):
|
| 72 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
| 73 |
+
conv_bias (bool, Optional):
|
| 74 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
| 75 |
+
layer_idx (int, Optional):
|
| 76 |
+
The index of the layer. Default: None.
|
| 77 |
+
norm_eps (float, Optional):
|
| 78 |
+
The epsilon value for the normalization layer. Default: 1e-5.
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
def __init__(
|
| 82 |
+
self,
|
| 83 |
+
hidden_size: int = 2048,
|
| 84 |
+
expand_v: float = 2,
|
| 85 |
+
head_dim: int = 256,
|
| 86 |
+
num_heads: int = 6,
|
| 87 |
+
mode: str = 'chunk',
|
| 88 |
+
use_gate: bool = True,
|
| 89 |
+
use_short_conv: bool = True,
|
| 90 |
+
conv_size: int = 4,
|
| 91 |
+
conv_bias: bool = False,
|
| 92 |
+
layer_idx: int = None,
|
| 93 |
+
norm_eps: float = 1e-5,
|
| 94 |
+
**kwargs
|
| 95 |
+
) -> GatedDeltaNet:
|
| 96 |
+
super().__init__()
|
| 97 |
+
|
| 98 |
+
self.mode = mode
|
| 99 |
+
|
| 100 |
+
self.hidden_size = hidden_size
|
| 101 |
+
self.expand_v = expand_v
|
| 102 |
+
|
| 103 |
+
self.use_gate = use_gate
|
| 104 |
+
self.use_short_conv = use_short_conv
|
| 105 |
+
self.conv_size = conv_size
|
| 106 |
+
self.conv_bias = conv_bias
|
| 107 |
+
|
| 108 |
+
self.head_dim = head_dim
|
| 109 |
+
self.num_heads = num_heads
|
| 110 |
+
|
| 111 |
+
self.key_dim = int(self.num_heads * self.head_dim)
|
| 112 |
+
self.value_dim = int(self.key_dim * self.expand_v)
|
| 113 |
+
self.head_k_dim = head_dim
|
| 114 |
+
self.head_v_dim = int(head_dim * self.expand_v)
|
| 115 |
+
self.layer_idx = layer_idx
|
| 116 |
+
|
| 117 |
+
# Consistency check: Ensure expand_v produces integer values
|
| 118 |
+
if not math.isclose(self.key_dim * expand_v, self.value_dim, rel_tol=1e-5):
|
| 119 |
+
raise ValueError(
|
| 120 |
+
f"expand_v={expand_v} does not produce an integer value when multiplied by key_dim={self.key_dim}. "
|
| 121 |
+
f"Resulting value_dim would be {self.key_dim * expand_v}, which is invalid for nn.Linear."
|
| 122 |
+
)
|
| 123 |
+
if not math.isclose(head_dim * expand_v, self.head_v_dim, rel_tol=1e-5):
|
| 124 |
+
raise ValueError(
|
| 125 |
+
f"expand_v={expand_v} does not produce an integer value when multiplied by head_dim={head_dim}. "
|
| 126 |
+
f"Resulting head_v_dim would be {head_dim * expand_v}, which is invalid for FusedRMSNormGated."
|
| 127 |
+
)
|
| 128 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
| 129 |
+
|
| 130 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 131 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 132 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 133 |
+
self.a_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
| 134 |
+
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
| 135 |
+
|
| 136 |
+
A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(0, 16)
|
| 137 |
+
self.A_log = nn.Parameter(torch.log(A))
|
| 138 |
+
self.A_log._no_weight_decay = True
|
| 139 |
+
# hard coded for now
|
| 140 |
+
dt_min = 0.001
|
| 141 |
+
dt_max = 0.1
|
| 142 |
+
dt_init_floor = 1e-4
|
| 143 |
+
dt = torch.exp(
|
| 144 |
+
torch.rand(self.num_heads) * (math.log(dt_max) - math.log(dt_min))
|
| 145 |
+
+ math.log(dt_min)
|
| 146 |
+
)
|
| 147 |
+
dt = torch.clamp(dt, min=dt_init_floor)
|
| 148 |
+
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
| 149 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
| 150 |
+
self.dt_bias = nn.Parameter(inv_dt)
|
| 151 |
+
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
|
| 152 |
+
# name.endswith("bias") in param_grouping.py
|
| 153 |
+
self.dt_bias._no_weight_decay = True
|
| 154 |
+
|
| 155 |
+
if use_short_conv:
|
| 156 |
+
self.conv_size = conv_size
|
| 157 |
+
self.q_conv1d = ShortConvolution(
|
| 158 |
+
hidden_size=self.key_dim,
|
| 159 |
+
kernel_size=conv_size,
|
| 160 |
+
activation='silu'
|
| 161 |
+
)
|
| 162 |
+
self.k_conv1d = ShortConvolution(
|
| 163 |
+
hidden_size=self.key_dim,
|
| 164 |
+
kernel_size=conv_size,
|
| 165 |
+
activation='silu'
|
| 166 |
+
)
|
| 167 |
+
self.v_conv1d = ShortConvolution(
|
| 168 |
+
hidden_size=self.value_dim,
|
| 169 |
+
kernel_size=conv_size,
|
| 170 |
+
activation='silu'
|
| 171 |
+
)
|
| 172 |
+
else:
|
| 173 |
+
raise UserWarning(
|
| 174 |
+
"ShortConvolution is crucial to the performance. "
|
| 175 |
+
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
|
| 176 |
+
)
|
| 177 |
+
if use_gate:
|
| 178 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 179 |
+
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
|
| 180 |
+
else:
|
| 181 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
| 182 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
| 183 |
+
|
| 184 |
+
def forward(
|
| 185 |
+
self,
|
| 186 |
+
hidden_states: torch.Tensor,
|
| 187 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 188 |
+
past_key_values: Optional[Cache] = None,
|
| 189 |
+
use_cache: Optional[bool] = False,
|
| 190 |
+
output_attentions: Optional[bool] = False,
|
| 191 |
+
**kwargs: Unpack[Dict]
|
| 192 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 193 |
+
if attention_mask is not None:
|
| 194 |
+
assert len(attention_mask.shape) == 2, (
|
| 195 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 196 |
+
"for padding purposes (0 indicating padding). "
|
| 197 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 201 |
+
if self.training:
|
| 202 |
+
assert mode == 'chunk', "Only chunk mode is supported in training."
|
| 203 |
+
|
| 204 |
+
last_state = None
|
| 205 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 206 |
+
last_state = past_key_values[self.layer_idx]
|
| 207 |
+
|
| 208 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 209 |
+
if self.use_short_conv:
|
| 210 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 211 |
+
if last_state is not None:
|
| 212 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
| 213 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 214 |
+
q, conv_state_q = self.q_conv1d(
|
| 215 |
+
x=self.q_proj(hidden_states),
|
| 216 |
+
mask=conv_mask,
|
| 217 |
+
cache=conv_state_q,
|
| 218 |
+
output_final_state=use_cache,
|
| 219 |
+
cu_seqlens=cu_seqlens
|
| 220 |
+
)
|
| 221 |
+
k, conv_state_k = self.k_conv1d(
|
| 222 |
+
x=self.k_proj(hidden_states),
|
| 223 |
+
mask=conv_mask,
|
| 224 |
+
cache=conv_state_k,
|
| 225 |
+
output_final_state=use_cache,
|
| 226 |
+
cu_seqlens=cu_seqlens
|
| 227 |
+
)
|
| 228 |
+
v, conv_state_v = self.v_conv1d(
|
| 229 |
+
x=self.v_proj(hidden_states),
|
| 230 |
+
mask=conv_mask,
|
| 231 |
+
cache=conv_state_v,
|
| 232 |
+
output_final_state=use_cache,
|
| 233 |
+
cu_seqlens=cu_seqlens
|
| 234 |
+
)
|
| 235 |
+
else:
|
| 236 |
+
q = F.silu(self.q_proj(hidden_states))
|
| 237 |
+
k = F.silu(self.k_proj(hidden_states))
|
| 238 |
+
v = F.silu(self.v_proj(hidden_states))
|
| 239 |
+
|
| 240 |
+
q, k = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim), (q, k))
|
| 241 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
| 242 |
+
beta = self.b_proj(hidden_states).sigmoid()
|
| 243 |
+
g = -self.A_log.float().exp() * F.softplus(self.a_proj(hidden_states).float() + self.dt_bias)
|
| 244 |
+
|
| 245 |
+
# dealing with padding
|
| 246 |
+
if attention_mask is not None:
|
| 247 |
+
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
|
| 248 |
+
g = g.mul(attention_mask[:, -g.shape[-2]:, None])
|
| 249 |
+
|
| 250 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 251 |
+
if mode == 'chunk':
|
| 252 |
+
o, recurrent_state = chunk_gated_delta_rule(
|
| 253 |
+
q=q,
|
| 254 |
+
k=k,
|
| 255 |
+
v=v,
|
| 256 |
+
g=g,
|
| 257 |
+
beta=beta,
|
| 258 |
+
initial_state=recurrent_state,
|
| 259 |
+
output_final_state=use_cache,
|
| 260 |
+
cu_seqlens=cu_seqlens,
|
| 261 |
+
head_first=False,
|
| 262 |
+
use_qk_l2norm_in_kernel=True
|
| 263 |
+
)
|
| 264 |
+
elif mode == 'fused_recurrent':
|
| 265 |
+
o, recurrent_state = fused_recurrent_gated_delta_rule(
|
| 266 |
+
q=q,
|
| 267 |
+
k=k,
|
| 268 |
+
v=v,
|
| 269 |
+
g=g,
|
| 270 |
+
beta=beta,
|
| 271 |
+
initial_state=recurrent_state,
|
| 272 |
+
output_final_state=use_cache,
|
| 273 |
+
cu_seqlens=cu_seqlens,
|
| 274 |
+
head_first=False,
|
| 275 |
+
use_qk_l2norm_in_kernel=True
|
| 276 |
+
)
|
| 277 |
+
if past_key_values is not None:
|
| 278 |
+
past_key_values.update(
|
| 279 |
+
recurrent_state=recurrent_state,
|
| 280 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
| 281 |
+
layer_idx=self.layer_idx,
|
| 282 |
+
offset=q.shape[1]
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
if self.use_gate:
|
| 286 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
| 287 |
+
o = self.o_norm(o, g)
|
| 288 |
+
else:
|
| 289 |
+
o = self.o_norm(o)
|
| 290 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
| 291 |
+
o = self.o_proj(o)
|
| 292 |
+
|
| 293 |
+
return o, None, past_key_values
|
fla/layers/gated_deltaproduct.py
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
|
| 11 |
+
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
|
| 12 |
+
from fla.ops.delta_rule import chunk_delta_rule
|
| 13 |
+
from fla.ops.gated_delta_rule import chunk_gated_delta_rule
|
| 14 |
+
|
| 15 |
+
if TYPE_CHECKING:
|
| 16 |
+
from transformers.processing_utils import Unpack
|
| 17 |
+
|
| 18 |
+
from fla.models.utils import Cache
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def elu_p1(x):
|
| 22 |
+
return (F.elu(x, 1.0, False) + 1.0).to(x)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def sum_norm(x):
|
| 26 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def interleave_multiple_sequences(*sequences):
|
| 30 |
+
"""
|
| 31 |
+
Interleave multiple sequences together.
|
| 32 |
+
For example, with sequences [A1, A2], [B1, B2], [C1, C2],
|
| 33 |
+
returns [A1, B1, C1, A2, B2, C2]
|
| 34 |
+
"""
|
| 35 |
+
if isinstance(sequences[0], (list, tuple)):
|
| 36 |
+
sequences = sequences[0]
|
| 37 |
+
|
| 38 |
+
if len(sequences) == 1:
|
| 39 |
+
return sequences[0]
|
| 40 |
+
|
| 41 |
+
# All sequences should have the same shape
|
| 42 |
+
assert all(s.shape == sequences[0].shape for s in sequences)
|
| 43 |
+
|
| 44 |
+
# Get the original shape
|
| 45 |
+
batch_size, seq_len, *rest = sequences[0].shape
|
| 46 |
+
|
| 47 |
+
# Stack sequences along a new dimension
|
| 48 |
+
stacked = torch.stack(sequences, dim=2)
|
| 49 |
+
|
| 50 |
+
# Reshape to interleave
|
| 51 |
+
reshaped = stacked.view(batch_size, seq_len * len(sequences), *rest)
|
| 52 |
+
|
| 53 |
+
return reshaped
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class GatedDeltaProduct(nn.Module):
|
| 57 |
+
"""
|
| 58 |
+
Generalized version of GatedDoubleDeltaNet that supports arbitrary number of householder transformations.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
hidden_size: int = 2048,
|
| 64 |
+
expand_v: float = 2,
|
| 65 |
+
head_dim: int = 256,
|
| 66 |
+
num_heads: int = 6,
|
| 67 |
+
num_householder: int = 2, # New parameter for number of householder transformations
|
| 68 |
+
mode: str = "chunk",
|
| 69 |
+
use_gate: bool = True,
|
| 70 |
+
use_forget_gate: bool = True, # when true Gated DeltaProduct, when false DeltaProduct
|
| 71 |
+
use_short_conv: bool = True,
|
| 72 |
+
conv_size: int = 4,
|
| 73 |
+
conv_bias: bool = False,
|
| 74 |
+
layer_idx: int | None = None,
|
| 75 |
+
norm_eps: float = 1e-5,
|
| 76 |
+
allow_neg_eigval: bool = False, # when true (Gated) DeltaProduct [-1, 1], when false (Gated) DeltaProduct [0, 1]
|
| 77 |
+
**kwargs,
|
| 78 |
+
) -> None:
|
| 79 |
+
super().__init__()
|
| 80 |
+
|
| 81 |
+
self.mode = mode
|
| 82 |
+
self.hidden_size = hidden_size
|
| 83 |
+
self.expand_v = expand_v
|
| 84 |
+
self.use_gate = use_gate
|
| 85 |
+
self.use_short_conv = use_short_conv
|
| 86 |
+
self.conv_size = conv_size
|
| 87 |
+
self.conv_bias = conv_bias
|
| 88 |
+
self.head_dim = head_dim
|
| 89 |
+
self.num_heads = num_heads
|
| 90 |
+
self.num_householder = num_householder
|
| 91 |
+
self.allow_neg_eigval = allow_neg_eigval
|
| 92 |
+
self.use_forget_gate = use_forget_gate
|
| 93 |
+
self.key_dim = self.num_heads * self.head_dim
|
| 94 |
+
self.value_dim = int(self.key_dim * self.expand_v)
|
| 95 |
+
self.head_qk_dim = head_dim
|
| 96 |
+
self.head_v_dim = int(head_dim * self.expand_v)
|
| 97 |
+
self.layer_idx = layer_idx
|
| 98 |
+
self.silu = nn.SiLU()
|
| 99 |
+
assert mode in ["chunk", "fused_recurrent"], f"Not supported mode `{mode}`."
|
| 100 |
+
# Create multiple projection layers for each householder transformation
|
| 101 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 102 |
+
|
| 103 |
+
self.k_projs = nn.ModuleList(
|
| 104 |
+
[
|
| 105 |
+
nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 106 |
+
for _ in range(num_householder)
|
| 107 |
+
]
|
| 108 |
+
)
|
| 109 |
+
self.v_projs = nn.ModuleList(
|
| 110 |
+
[
|
| 111 |
+
nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 112 |
+
for _ in range(num_householder)
|
| 113 |
+
]
|
| 114 |
+
)
|
| 115 |
+
self.b_projs = nn.ModuleList(
|
| 116 |
+
[
|
| 117 |
+
nn.Linear(hidden_size, self.num_heads, bias=False)
|
| 118 |
+
for _ in range(num_householder)
|
| 119 |
+
]
|
| 120 |
+
)
|
| 121 |
+
if use_short_conv:
|
| 122 |
+
self.q_conv1ds = nn.ModuleList(
|
| 123 |
+
[
|
| 124 |
+
ShortConvolution(
|
| 125 |
+
hidden_size=self.key_dim,
|
| 126 |
+
kernel_size=conv_size,
|
| 127 |
+
activation="silu",
|
| 128 |
+
)
|
| 129 |
+
for _ in range(num_householder)
|
| 130 |
+
]
|
| 131 |
+
)
|
| 132 |
+
self.k_conv1ds = nn.ModuleList(
|
| 133 |
+
[
|
| 134 |
+
ShortConvolution(
|
| 135 |
+
hidden_size=self.key_dim,
|
| 136 |
+
kernel_size=conv_size,
|
| 137 |
+
activation="silu",
|
| 138 |
+
)
|
| 139 |
+
for _ in range(num_householder)
|
| 140 |
+
]
|
| 141 |
+
)
|
| 142 |
+
self.v_conv1ds = nn.ModuleList(
|
| 143 |
+
[
|
| 144 |
+
ShortConvolution(
|
| 145 |
+
hidden_size=self.value_dim,
|
| 146 |
+
kernel_size=conv_size,
|
| 147 |
+
activation="silu",
|
| 148 |
+
)
|
| 149 |
+
for _ in range(num_householder)
|
| 150 |
+
]
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
if self.use_forget_gate:
|
| 154 |
+
self.a_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
| 155 |
+
A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(0, 16)
|
| 156 |
+
A_log = torch.log(A)
|
| 157 |
+
self.A_log = nn.Parameter(A_log)
|
| 158 |
+
self.A_log._no_weight_decay = True
|
| 159 |
+
|
| 160 |
+
# Initialize dt parameters
|
| 161 |
+
dt_min = 0.001
|
| 162 |
+
dt_max = 0.1
|
| 163 |
+
dt_init_floor = 1e-4
|
| 164 |
+
dt = torch.exp(
|
| 165 |
+
torch.rand(self.num_heads) * (math.log(dt_max) - math.log(dt_min))
|
| 166 |
+
+ math.log(dt_min)
|
| 167 |
+
)
|
| 168 |
+
dt = torch.clamp(dt, min=dt_init_floor)
|
| 169 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
| 170 |
+
self.dt_bias = nn.Parameter(inv_dt)
|
| 171 |
+
self.dt_bias._no_weight_decay = True
|
| 172 |
+
|
| 173 |
+
if use_gate:
|
| 174 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 175 |
+
self.o_norm = FusedRMSNormSwishGate(self.head_v_dim, eps=norm_eps)
|
| 176 |
+
else:
|
| 177 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
| 178 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
| 179 |
+
self.k_id = torch.nn.Identity()
|
| 180 |
+
self.apply(self._initialize_weights)
|
| 181 |
+
|
| 182 |
+
def _initialize_weights(self, module: nn.Module):
|
| 183 |
+
if getattr(module, "_is_hf_initialized", False):
|
| 184 |
+
return
|
| 185 |
+
if isinstance(module, nn.Linear):
|
| 186 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
| 187 |
+
if module.bias is not None:
|
| 188 |
+
nn.init.zeros_(module.bias)
|
| 189 |
+
module._is_hf_initialized = True
|
| 190 |
+
|
| 191 |
+
def forward(
|
| 192 |
+
self,
|
| 193 |
+
hidden_states: torch.Tensor,
|
| 194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 195 |
+
past_key_values: Optional[Cache] = None,
|
| 196 |
+
use_cache: Optional[bool] = False,
|
| 197 |
+
output_attentions: Optional[bool] = False,
|
| 198 |
+
**kwargs: Unpack[Dict],
|
| 199 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 200 |
+
if attention_mask is not None:
|
| 201 |
+
assert len(attention_mask.shape) == 2, (
|
| 202 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 203 |
+
"for padding purposes (0 indicating padding)."
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
mode = (
|
| 207 |
+
"chunk" # 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 208 |
+
)
|
| 209 |
+
if self.training:
|
| 210 |
+
assert mode == "chunk", "Only chunk mode is supported in training."
|
| 211 |
+
|
| 212 |
+
last_state = None
|
| 213 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 214 |
+
last_state = past_key_values[self.layer_idx]
|
| 215 |
+
|
| 216 |
+
# Process each householder transformation
|
| 217 |
+
ks, vs, betas = [], [], []
|
| 218 |
+
conv_states = []
|
| 219 |
+
|
| 220 |
+
for i in range(self.num_householder):
|
| 221 |
+
if self.use_short_conv:
|
| 222 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 223 |
+
if last_state is not None:
|
| 224 |
+
conv_state_q, conv_state_k, conv_state_v = last_state["conv_state"][
|
| 225 |
+
i
|
| 226 |
+
]
|
| 227 |
+
conv_mask = (
|
| 228 |
+
attention_mask[:, -hidden_states.shape[1]:]
|
| 229 |
+
if attention_mask is not None
|
| 230 |
+
else None
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
k, conv_state_k = self.k_conv1ds[i](
|
| 234 |
+
x=self.k_projs[i](hidden_states),
|
| 235 |
+
mask=conv_mask,
|
| 236 |
+
cache=conv_state_k,
|
| 237 |
+
output_final_state=use_cache,
|
| 238 |
+
)
|
| 239 |
+
v, conv_state_v = self.v_conv1ds[i](
|
| 240 |
+
x=self.v_projs[i](hidden_states),
|
| 241 |
+
mask=conv_mask,
|
| 242 |
+
cache=conv_state_v,
|
| 243 |
+
output_final_state=use_cache,
|
| 244 |
+
)
|
| 245 |
+
conv_states.append((conv_state_q, conv_state_k, conv_state_v))
|
| 246 |
+
else:
|
| 247 |
+
k = self.silu(self.k_projs[i](hidden_states))
|
| 248 |
+
v = self.silu(self.v_projs[i](hidden_states))
|
| 249 |
+
|
| 250 |
+
ks.append(k)
|
| 251 |
+
vs.append(v)
|
| 252 |
+
|
| 253 |
+
beta = self.b_projs[i](
|
| 254 |
+
hidden_states
|
| 255 |
+
).sigmoid() # bs, sequence_length, num_heads
|
| 256 |
+
if attention_mask is not None:
|
| 257 |
+
beta = beta.mul(attention_mask[:, -hidden_states.shape[1]:, None])
|
| 258 |
+
if self.allow_neg_eigval:
|
| 259 |
+
beta = beta * 2
|
| 260 |
+
betas.append(beta)
|
| 261 |
+
|
| 262 |
+
if self.use_short_conv:
|
| 263 |
+
q, conv_state_q = self.q_conv1ds[0](
|
| 264 |
+
x=self.q_proj(hidden_states),
|
| 265 |
+
mask=conv_mask,
|
| 266 |
+
cache=conv_state_q,
|
| 267 |
+
output_final_state=use_cache,
|
| 268 |
+
)
|
| 269 |
+
else:
|
| 270 |
+
q = self.silu(self.q_proj(hidden_states))
|
| 271 |
+
q = interleave_multiple_sequences(
|
| 272 |
+
[torch.zeros_like(q)] * (self.num_householder - 1) + [q]
|
| 273 |
+
)
|
| 274 |
+
# Interleave all sequences
|
| 275 |
+
k = interleave_multiple_sequences(ks)
|
| 276 |
+
v = interleave_multiple_sequences(vs)
|
| 277 |
+
beta = interleave_multiple_sequences(betas)
|
| 278 |
+
|
| 279 |
+
q, k, v = (
|
| 280 |
+
rearrange(x, "b t (h d) -> b t h d", h=self.num_heads) for x in (q, k, v)
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
recurrent_state = (
|
| 284 |
+
last_state["recurrent_state"] if last_state is not None else None
|
| 285 |
+
)
|
| 286 |
+
offsets = kwargs.get("offsets")
|
| 287 |
+
|
| 288 |
+
if mode == "chunk":
|
| 289 |
+
if self.use_forget_gate:
|
| 290 |
+
g = -self.A_log.float().exp() * F.softplus(
|
| 291 |
+
self.a_proj(hidden_states).float() + self.dt_bias
|
| 292 |
+
)
|
| 293 |
+
if attention_mask is not None:
|
| 294 |
+
g = g.mul(attention_mask[:, -g.shape[-2]:, None])
|
| 295 |
+
|
| 296 |
+
# Interleave g with zeros for non-first transformations
|
| 297 |
+
g = interleave_multiple_sequences(
|
| 298 |
+
[g] + [torch.zeros_like(g)] * (self.num_householder - 1)
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
o, recurrent_state = chunk_gated_delta_rule(
|
| 302 |
+
q=q,
|
| 303 |
+
k=k,
|
| 304 |
+
v=v,
|
| 305 |
+
g=g,
|
| 306 |
+
beta=beta,
|
| 307 |
+
initial_state=recurrent_state,
|
| 308 |
+
output_final_state=use_cache,
|
| 309 |
+
cu_seqlens=offsets,
|
| 310 |
+
head_first=False,
|
| 311 |
+
use_qk_l2norm_in_kernel=True
|
| 312 |
+
)
|
| 313 |
+
else:
|
| 314 |
+
o, recurrent_state = chunk_delta_rule(
|
| 315 |
+
q=q,
|
| 316 |
+
k=k,
|
| 317 |
+
v=v,
|
| 318 |
+
beta=beta,
|
| 319 |
+
initial_state=recurrent_state,
|
| 320 |
+
output_final_state=use_cache,
|
| 321 |
+
cu_seqlens=offsets,
|
| 322 |
+
head_first=False,
|
| 323 |
+
use_qk_l2norm_in_kernel=True
|
| 324 |
+
)
|
| 325 |
+
else:
|
| 326 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 327 |
+
|
| 328 |
+
# Take every nth element for n householder transformations
|
| 329 |
+
o = o[:, self.num_householder - 1:: self.num_householder, :]
|
| 330 |
+
|
| 331 |
+
if past_key_values is not None:
|
| 332 |
+
past_key_values.update(
|
| 333 |
+
recurrent_state=recurrent_state,
|
| 334 |
+
conv_state=conv_states if self.use_short_conv else None,
|
| 335 |
+
layer_idx=self.layer_idx,
|
| 336 |
+
offset=q.shape[2],
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
if self.use_gate:
|
| 340 |
+
g = rearrange(
|
| 341 |
+
self.g_proj(hidden_states),
|
| 342 |
+
"... (h d) -> ... h d",
|
| 343 |
+
h=self.num_heads,
|
| 344 |
+
)
|
| 345 |
+
o = self.o_norm(o, g)
|
| 346 |
+
else:
|
| 347 |
+
o = self.o_norm(o)
|
| 348 |
+
o = rearrange(o, "b t h d -> b t (h d)")
|
| 349 |
+
o = self.o_proj(o)
|
| 350 |
+
|
| 351 |
+
return o, None, past_key_values
|
fla/layers/gla.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
from __future__ import annotations
|
| 6 |
+
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from einops import rearrange, repeat
|
| 13 |
+
|
| 14 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
| 15 |
+
from fla.modules.activations import ACT2FN
|
| 16 |
+
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
| 17 |
+
|
| 18 |
+
if TYPE_CHECKING:
|
| 19 |
+
from transformers.processing_utils import Unpack
|
| 20 |
+
|
| 21 |
+
from fla.models.utils import Cache
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class GatedLinearAttention(nn.Module):
|
| 25 |
+
r"""
|
| 26 |
+
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
mode (str, Optional):
|
| 30 |
+
Which GLA kernel to use.
|
| 31 |
+
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
| 32 |
+
Default: `chunk`.
|
| 33 |
+
hidden_size (int, Optional):
|
| 34 |
+
The hidden size of the input. Default: 1024.
|
| 35 |
+
expand_k (float, Optional):
|
| 36 |
+
The expansion ratio for the key dim. Default: 0.5.
|
| 37 |
+
expand_v (float, Optional):
|
| 38 |
+
The expansion ratio for the value dim. Default: 1.0.
|
| 39 |
+
num_heads (int, Optional):
|
| 40 |
+
The number of heads. Default: 4.
|
| 41 |
+
num_kv_heads (int, Optional):
|
| 42 |
+
The number of key/value heads, used for MQA. Default: None.
|
| 43 |
+
feature_map (str, Optional):
|
| 44 |
+
Feature map function applied to queries/keys. Default: None.
|
| 45 |
+
use_short_conv (bool, Optional):
|
| 46 |
+
Whether to use short convolutions. Default: `False`.
|
| 47 |
+
conv_size (int, Optional):
|
| 48 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
| 49 |
+
conv_bias (bool, Optional):
|
| 50 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
| 51 |
+
use_output_gate (bool, Optional):
|
| 52 |
+
Whether to use output gate. Default: `True`.
|
| 53 |
+
gate_fn (str, Optional):
|
| 54 |
+
The activation function for the output gate. Default: `swish`.
|
| 55 |
+
elementwise_affine (bool, Optional):
|
| 56 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
| 57 |
+
norm_eps (float, Optional):
|
| 58 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
| 59 |
+
gate_logit_normalizer (int, Optional):
|
| 60 |
+
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
|
| 61 |
+
gate_low_rank_dim (int, Optional):
|
| 62 |
+
The low rank dim for the gate projection. Default: 16.
|
| 63 |
+
clamp_min (float, Optional):
|
| 64 |
+
The minimum value for the gate logits. Default: None.
|
| 65 |
+
fuse_norm (bool, Optional):
|
| 66 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
| 67 |
+
layer_idx (int, Optional):
|
| 68 |
+
The index of the layer. Default: None.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
def __init__(
|
| 72 |
+
self,
|
| 73 |
+
mode: str = 'chunk',
|
| 74 |
+
hidden_size: int = 1024,
|
| 75 |
+
expand_k: float = 0.5,
|
| 76 |
+
expand_v: float = 1.0,
|
| 77 |
+
num_heads: int = 4,
|
| 78 |
+
num_kv_heads: Optional[int] = None,
|
| 79 |
+
feature_map: Optional[str] = None,
|
| 80 |
+
use_short_conv: bool = False,
|
| 81 |
+
conv_size: int = 4,
|
| 82 |
+
conv_bias: bool = False,
|
| 83 |
+
use_output_gate: bool = True,
|
| 84 |
+
gate_fn: str = 'swish',
|
| 85 |
+
elementwise_affine: Optional[bool] = True,
|
| 86 |
+
norm_eps: float = 1e-5,
|
| 87 |
+
gate_logit_normalizer: int = 16,
|
| 88 |
+
gate_low_rank_dim: int = 16,
|
| 89 |
+
clamp_min: Optional[float] = None,
|
| 90 |
+
fuse_norm: bool = True,
|
| 91 |
+
layer_idx: int = None,
|
| 92 |
+
) -> GatedLinearAttention:
|
| 93 |
+
super().__init__()
|
| 94 |
+
|
| 95 |
+
self.mode = mode
|
| 96 |
+
self.hidden_size = hidden_size
|
| 97 |
+
self.expand_k = expand_k
|
| 98 |
+
self.expand_v = expand_v
|
| 99 |
+
self.num_heads = num_heads
|
| 100 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
| 101 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
| 102 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
| 103 |
+
|
| 104 |
+
self.use_short_conv = use_short_conv
|
| 105 |
+
self.conv_size = conv_size
|
| 106 |
+
self.conv_bias = conv_bias
|
| 107 |
+
self.use_output_gate = use_output_gate
|
| 108 |
+
|
| 109 |
+
self.key_dim = int(hidden_size * expand_k)
|
| 110 |
+
self.value_dim = int(hidden_size * expand_v)
|
| 111 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
| 112 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
| 113 |
+
self.clamp_min = clamp_min
|
| 114 |
+
self.layer_idx = layer_idx
|
| 115 |
+
|
| 116 |
+
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
| 117 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
| 118 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
| 119 |
+
|
| 120 |
+
self.head_k_dim = self.key_dim // num_heads
|
| 121 |
+
self.head_v_dim = self.value_dim // num_heads
|
| 122 |
+
|
| 123 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 124 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
| 125 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
| 126 |
+
if self.use_output_gate:
|
| 127 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 128 |
+
|
| 129 |
+
if use_short_conv:
|
| 130 |
+
self.conv_size = conv_size
|
| 131 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
| 132 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
| 133 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
| 134 |
+
|
| 135 |
+
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
|
| 136 |
+
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True))
|
| 137 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
| 138 |
+
|
| 139 |
+
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
| 140 |
+
self.g_norm_swish_gate = FusedRMSNormGated(
|
| 141 |
+
hidden_size=self.head_v_dim,
|
| 142 |
+
elementwise_affine=elementwise_affine,
|
| 143 |
+
eps=norm_eps
|
| 144 |
+
)
|
| 145 |
+
self.fuse_norm_and_gate = True
|
| 146 |
+
else:
|
| 147 |
+
self.fuse_norm_and_gate = False
|
| 148 |
+
self.g_norm = RMSNorm(
|
| 149 |
+
hidden_size=self.head_v_dim,
|
| 150 |
+
elementwise_affine=elementwise_affine,
|
| 151 |
+
eps=norm_eps
|
| 152 |
+
)
|
| 153 |
+
self.gate_fn = ACT2FN[gate_fn]
|
| 154 |
+
|
| 155 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
| 156 |
+
|
| 157 |
+
def forward(
|
| 158 |
+
self,
|
| 159 |
+
hidden_states: torch.Tensor,
|
| 160 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 161 |
+
past_key_values: Optional[Cache] = None,
|
| 162 |
+
use_cache: Optional[bool] = False,
|
| 163 |
+
output_attentions: Optional[bool] = False,
|
| 164 |
+
**kwargs: Unpack[Dict]
|
| 165 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 166 |
+
if attention_mask is not None:
|
| 167 |
+
assert len(attention_mask.shape) == 2, (
|
| 168 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 169 |
+
"for padding purposes (0 indicating padding). "
|
| 170 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# launching the triton kernel for just one token will actually be slower
|
| 174 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 175 |
+
|
| 176 |
+
last_state = None
|
| 177 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 178 |
+
last_state = past_key_values[self.layer_idx]
|
| 179 |
+
|
| 180 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 181 |
+
if self.use_short_conv:
|
| 182 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 183 |
+
if last_state is not None:
|
| 184 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
| 185 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 186 |
+
q, conv_state_q = self.q_conv1d(
|
| 187 |
+
x=self.q_proj(hidden_states),
|
| 188 |
+
mask=conv_mask,
|
| 189 |
+
cache=conv_state_q,
|
| 190 |
+
output_final_state=use_cache,
|
| 191 |
+
cu_seqlens=cu_seqlens
|
| 192 |
+
)
|
| 193 |
+
k, conv_state_k = self.k_conv1d(
|
| 194 |
+
x=self.k_proj(hidden_states),
|
| 195 |
+
mask=conv_mask,
|
| 196 |
+
cache=conv_state_k,
|
| 197 |
+
output_final_state=use_cache,
|
| 198 |
+
cu_seqlens=cu_seqlens
|
| 199 |
+
)
|
| 200 |
+
v, conv_state_v = self.v_conv1d(
|
| 201 |
+
x=self.v_proj(hidden_states),
|
| 202 |
+
mask=conv_mask,
|
| 203 |
+
cache=conv_state_v,
|
| 204 |
+
output_final_state=use_cache,
|
| 205 |
+
cu_seqlens=cu_seqlens
|
| 206 |
+
)
|
| 207 |
+
else:
|
| 208 |
+
q = self.q_proj(hidden_states)
|
| 209 |
+
k = self.k_proj(hidden_states)
|
| 210 |
+
v = self.v_proj(hidden_states)
|
| 211 |
+
gk = self.gk_proj(hidden_states)
|
| 212 |
+
|
| 213 |
+
if self.feature_map_fn is not None:
|
| 214 |
+
q, k = map(self.feature_map_fn, (q, k))
|
| 215 |
+
# dealing with left-padding
|
| 216 |
+
if attention_mask is not None:
|
| 217 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
| 218 |
+
q = rearrange(q, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
| 219 |
+
if self.num_kv_groups > 1:
|
| 220 |
+
k, gk = (repeat(x, 'b t (h d) -> b t (h g) d', g=self.num_kv_groups, d=self.head_k_dim) for x in (k, gk))
|
| 221 |
+
v = repeat(v, 'b t (h d) -> b t (h g) d', g=self.num_kv_groups, d=self.head_v_dim)
|
| 222 |
+
else:
|
| 223 |
+
k, gk = (rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim) for x in (k, gk))
|
| 224 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
| 225 |
+
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
|
| 226 |
+
|
| 227 |
+
if self.clamp_min is not None:
|
| 228 |
+
gk = torch.clamp_min(gk, self.clamp_min)
|
| 229 |
+
|
| 230 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 231 |
+
if mode == 'fused_recurrent':
|
| 232 |
+
o, recurrent_state = fused_recurrent_gla(
|
| 233 |
+
q=q,
|
| 234 |
+
k=k,
|
| 235 |
+
v=v,
|
| 236 |
+
gk=gk,
|
| 237 |
+
initial_state=recurrent_state,
|
| 238 |
+
output_final_state=use_cache,
|
| 239 |
+
cu_seqlens=cu_seqlens,
|
| 240 |
+
head_first=False
|
| 241 |
+
)
|
| 242 |
+
elif mode == 'fused_chunk':
|
| 243 |
+
o, recurrent_state = fused_chunk_gla(
|
| 244 |
+
q=q,
|
| 245 |
+
k=k,
|
| 246 |
+
v=v,
|
| 247 |
+
g=gk,
|
| 248 |
+
initial_state=recurrent_state,
|
| 249 |
+
output_final_state=use_cache,
|
| 250 |
+
head_first=False
|
| 251 |
+
)
|
| 252 |
+
elif mode == 'chunk':
|
| 253 |
+
o, recurrent_state = chunk_gla(
|
| 254 |
+
q=q,
|
| 255 |
+
k=k,
|
| 256 |
+
v=v,
|
| 257 |
+
g=gk,
|
| 258 |
+
initial_state=recurrent_state,
|
| 259 |
+
output_final_state=use_cache,
|
| 260 |
+
cu_seqlens=cu_seqlens,
|
| 261 |
+
head_first=False
|
| 262 |
+
)
|
| 263 |
+
else:
|
| 264 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 265 |
+
|
| 266 |
+
if past_key_values is not None:
|
| 267 |
+
past_key_values.update(
|
| 268 |
+
recurrent_state=recurrent_state,
|
| 269 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
| 270 |
+
layer_idx=self.layer_idx,
|
| 271 |
+
offset=q.shape[1]
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
if self.use_output_gate:
|
| 275 |
+
g = self.g_proj(hidden_states)
|
| 276 |
+
if self.fuse_norm_and_gate:
|
| 277 |
+
g = rearrange(g, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
| 278 |
+
o = self.g_norm_swish_gate(o, g)
|
| 279 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
| 280 |
+
else:
|
| 281 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
| 282 |
+
o = o * self.gate_fn(g)
|
| 283 |
+
else:
|
| 284 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
| 285 |
+
o = self.o_proj(o)
|
| 286 |
+
|
| 287 |
+
return o, None, past_key_values
|
| 288 |
+
|
| 289 |
+
def state_size(self, **kwargs) -> int:
|
| 290 |
+
state_size = self.key_dim * self.head_v_dim
|
| 291 |
+
for module in self.children():
|
| 292 |
+
if isinstance(module, ShortConvolution):
|
| 293 |
+
state_size += module.state_size
|
| 294 |
+
return state_size
|
fla/layers/gsa.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
|
| 14 |
+
from fla.modules import RMSNorm, ShortConvolution
|
| 15 |
+
from fla.modules.feature_map import ReLUFeatureMap, SwishFeatureMap, T2RFeatureMap
|
| 16 |
+
from fla.modules.layernorm import rms_norm_linear
|
| 17 |
+
from fla.ops.gsa import chunk_gsa, fused_recurrent_gsa
|
| 18 |
+
|
| 19 |
+
if TYPE_CHECKING:
|
| 20 |
+
from transformers.processing_utils import Unpack
|
| 21 |
+
|
| 22 |
+
from fla.models.utils import Cache
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GatedSlotAttention(nn.Module):
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
mode: str = 'chunk',
|
| 30 |
+
hidden_size: int = 1024,
|
| 31 |
+
expand_k: float = 1.,
|
| 32 |
+
expand_v: float = 1.,
|
| 33 |
+
num_heads: int = 4,
|
| 34 |
+
num_kv_heads: Optional[int] = None,
|
| 35 |
+
use_short_conv: bool = False,
|
| 36 |
+
conv_size: int = 4,
|
| 37 |
+
conv_bias: bool = False,
|
| 38 |
+
num_slots: Optional[int] = None,
|
| 39 |
+
elementwise_affine: Optional[bool] = True,
|
| 40 |
+
norm_eps: float = 1e-5,
|
| 41 |
+
gate_logit_normalizer: int = 8,
|
| 42 |
+
feature_map: str = 'swish',
|
| 43 |
+
use_output_gate: bool = False,
|
| 44 |
+
use_norm: bool = True,
|
| 45 |
+
layer_idx: Optional[int] = None,
|
| 46 |
+
scale: Optional[float] = 1.,
|
| 47 |
+
**kwargs
|
| 48 |
+
) -> GatedSlotAttention:
|
| 49 |
+
super().__init__()
|
| 50 |
+
|
| 51 |
+
self.mode = mode
|
| 52 |
+
self.hidden_size = hidden_size
|
| 53 |
+
self.expand_k = expand_k
|
| 54 |
+
self.expand_v = expand_v
|
| 55 |
+
self.num_heads = num_heads
|
| 56 |
+
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
| 57 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
| 58 |
+
self.key_dim = int(hidden_size * expand_k)
|
| 59 |
+
self.value_dim = int(hidden_size * expand_v)
|
| 60 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
| 61 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
| 62 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
| 63 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
| 64 |
+
|
| 65 |
+
self.use_short_conv = use_short_conv
|
| 66 |
+
self.conv_size = conv_size
|
| 67 |
+
self.conv_bias = conv_bias
|
| 68 |
+
|
| 69 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
| 70 |
+
|
| 71 |
+
self.use_output_gate = use_output_gate
|
| 72 |
+
self.use_norm = use_norm
|
| 73 |
+
self.scale = scale
|
| 74 |
+
|
| 75 |
+
if num_slots is None:
|
| 76 |
+
num_slots = self.head_k_dim
|
| 77 |
+
self.num_slots = num_slots
|
| 78 |
+
|
| 79 |
+
self.layer_idx = layer_idx
|
| 80 |
+
|
| 81 |
+
if layer_idx is None:
|
| 82 |
+
warnings.warn(
|
| 83 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 84 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 85 |
+
"when creating this class."
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
self.register_module('feature_map', None)
|
| 89 |
+
if feature_map == 'swish':
|
| 90 |
+
self.feature_map = SwishFeatureMap()
|
| 91 |
+
elif feature_map == 'relu':
|
| 92 |
+
self.feature_map = ReLUFeatureMap()
|
| 93 |
+
elif feature_map == 't2r':
|
| 94 |
+
self.feature_map = T2RFeatureMap(self.head_k_dim, self.head_k_dim)
|
| 95 |
+
else:
|
| 96 |
+
raise NotImplementedError(f"Feature map `{feature_map}` is not supported now.")
|
| 97 |
+
|
| 98 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
| 99 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
|
| 100 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
|
| 101 |
+
self.f_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.num_slots, bias=False)
|
| 102 |
+
|
| 103 |
+
if use_short_conv:
|
| 104 |
+
self.conv_size = conv_size
|
| 105 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
| 106 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
| 107 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
| 108 |
+
|
| 109 |
+
self.g_norm = RMSNorm(self.hidden_size, elementwise_affine, eps=norm_eps)
|
| 110 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
| 111 |
+
|
| 112 |
+
def forward(
|
| 113 |
+
self,
|
| 114 |
+
hidden_states: torch.Tensor,
|
| 115 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 116 |
+
past_key_values: Optional[Cache] = None,
|
| 117 |
+
use_cache: Optional[bool] = False,
|
| 118 |
+
output_attentions: Optional[bool] = False,
|
| 119 |
+
**kwargs: Unpack[Dict]
|
| 120 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 121 |
+
if attention_mask is not None:
|
| 122 |
+
assert len(attention_mask.shape) == 2, (
|
| 123 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 124 |
+
"for padding purposes (0 indicating padding). "
|
| 125 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# launching the triton kernel for just one token will actually be slower
|
| 129 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 130 |
+
|
| 131 |
+
last_state = None
|
| 132 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 133 |
+
last_state = past_key_values[self.layer_idx]
|
| 134 |
+
|
| 135 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 136 |
+
if self.use_short_conv:
|
| 137 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 138 |
+
if last_state is not None:
|
| 139 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
| 140 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 141 |
+
q, conv_state_q = self.q_conv1d(
|
| 142 |
+
x=self.q_proj(hidden_states),
|
| 143 |
+
mask=conv_mask,
|
| 144 |
+
cache=conv_state_q,
|
| 145 |
+
output_final_state=use_cache,
|
| 146 |
+
cu_seqlens=cu_seqlens
|
| 147 |
+
)
|
| 148 |
+
k, conv_state_k = self.k_conv1d(
|
| 149 |
+
x=self.k_proj(hidden_states),
|
| 150 |
+
mask=conv_mask,
|
| 151 |
+
cache=conv_state_k,
|
| 152 |
+
output_final_state=use_cache,
|
| 153 |
+
cu_seqlens=cu_seqlens
|
| 154 |
+
)
|
| 155 |
+
v, conv_state_v = self.v_conv1d(
|
| 156 |
+
x=self.v_proj(hidden_states),
|
| 157 |
+
mask=conv_mask,
|
| 158 |
+
cache=conv_state_v,
|
| 159 |
+
output_final_state=use_cache,
|
| 160 |
+
cu_seqlens=cu_seqlens
|
| 161 |
+
)
|
| 162 |
+
else:
|
| 163 |
+
q = self.q_proj(hidden_states)
|
| 164 |
+
k = self.k_proj(hidden_states)
|
| 165 |
+
v = self.v_proj(hidden_states)
|
| 166 |
+
f = self.f_proj(hidden_states)
|
| 167 |
+
|
| 168 |
+
q = rearrange(q, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
| 169 |
+
k = rearrange(k, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
| 170 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
| 171 |
+
f = rearrange(f, 'b t (h m) -> b t h m', m=self.num_slots)
|
| 172 |
+
|
| 173 |
+
if self.feature_map is not None:
|
| 174 |
+
q, k = map(lambda x: self.feature_map(x), (q, k))
|
| 175 |
+
v = F.silu(v)
|
| 176 |
+
|
| 177 |
+
f = F.logsigmoid(f) / self.gate_logit_normalizer
|
| 178 |
+
s = (1 - f.exp()).to(f.dtype)
|
| 179 |
+
# dealing with left-padding
|
| 180 |
+
if attention_mask is not None:
|
| 181 |
+
s = s.mul_(attention_mask[:, -s.shape[1]:, None, None])
|
| 182 |
+
v = v.mul_(attention_mask[:, -v.shape[1]:, None, None])
|
| 183 |
+
|
| 184 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 185 |
+
if mode == 'fused_recurrent':
|
| 186 |
+
o, recurrent_state = fused_recurrent_gsa(
|
| 187 |
+
q=q,
|
| 188 |
+
k=k,
|
| 189 |
+
v=v,
|
| 190 |
+
s=s,
|
| 191 |
+
g=f,
|
| 192 |
+
initial_state=recurrent_state,
|
| 193 |
+
output_final_state=use_cache,
|
| 194 |
+
scale=self.scale,
|
| 195 |
+
cu_seqlens=cu_seqlens,
|
| 196 |
+
head_first=False
|
| 197 |
+
)
|
| 198 |
+
elif mode == 'chunk':
|
| 199 |
+
o, recurrent_state = chunk_gsa(
|
| 200 |
+
q=q,
|
| 201 |
+
k=k,
|
| 202 |
+
v=v,
|
| 203 |
+
s=s,
|
| 204 |
+
g=f,
|
| 205 |
+
initial_state=recurrent_state,
|
| 206 |
+
output_final_state=use_cache,
|
| 207 |
+
scale=self.scale,
|
| 208 |
+
cu_seqlens=cu_seqlens,
|
| 209 |
+
head_first=False
|
| 210 |
+
)
|
| 211 |
+
else:
|
| 212 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 213 |
+
|
| 214 |
+
if past_key_values is not None:
|
| 215 |
+
past_key_values.update(
|
| 216 |
+
recurrent_state=recurrent_state,
|
| 217 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
| 218 |
+
layer_idx=self.layer_idx,
|
| 219 |
+
offset=q.shape[1]
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
| 223 |
+
o = rms_norm_linear(F.silu(o), self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
|
| 224 |
+
return o, None, past_key_values
|
| 225 |
+
|
| 226 |
+
def state_size(self, *args, **kwargs) -> int:
|
| 227 |
+
return 2 * self.num_slots * self.hidden_size
|
fla/layers/hgrn.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
# "Hierarchically Gated Recurrent Neural Network for Sequence Modeling" [https://arxiv.org/abs/2311.04823]
|
| 5 |
+
|
| 6 |
+
from __future__ import annotations
|
| 7 |
+
|
| 8 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
|
| 14 |
+
from fla.modules import FusedRMSNormGated, ShortConvolution
|
| 15 |
+
from fla.modules.activations import swiglu
|
| 16 |
+
from fla.ops.hgrn import chunk_hgrn, fused_recurrent_hgrn
|
| 17 |
+
|
| 18 |
+
if TYPE_CHECKING:
|
| 19 |
+
from transformers.processing_utils import Unpack
|
| 20 |
+
|
| 21 |
+
from fla.models.utils import Cache
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class HGRNAttention(nn.Module):
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
mode: str = 'chunk',
|
| 29 |
+
hidden_size: int = 1024,
|
| 30 |
+
expand_ratio: Optional[int] = 1,
|
| 31 |
+
use_short_conv: bool = False,
|
| 32 |
+
conv_size: int = 4,
|
| 33 |
+
conv_bias: bool = False,
|
| 34 |
+
elementwise_affine: Optional[bool] = True,
|
| 35 |
+
norm_eps: float = 1e-5,
|
| 36 |
+
layer_idx: int = None
|
| 37 |
+
) -> HGRNAttention:
|
| 38 |
+
super().__init__()
|
| 39 |
+
|
| 40 |
+
self.mode = mode
|
| 41 |
+
self.hidden_size = hidden_size
|
| 42 |
+
self.expand_ratio = expand_ratio
|
| 43 |
+
self.input_dim = int(hidden_size * expand_ratio)
|
| 44 |
+
|
| 45 |
+
self.use_short_conv = use_short_conv
|
| 46 |
+
self.conv_size = conv_size
|
| 47 |
+
self.conv_bias = conv_bias
|
| 48 |
+
|
| 49 |
+
self.layer_idx = layer_idx
|
| 50 |
+
|
| 51 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
| 52 |
+
|
| 53 |
+
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
| 54 |
+
self.f_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
| 55 |
+
self.g_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
| 56 |
+
|
| 57 |
+
if use_short_conv:
|
| 58 |
+
self.conv_size = conv_size
|
| 59 |
+
self.q_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
| 60 |
+
self.f_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
| 61 |
+
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
| 62 |
+
|
| 63 |
+
self.g_norm = FusedRMSNormGated(
|
| 64 |
+
hidden_size=self.input_dim,
|
| 65 |
+
elementwise_affine=elementwise_affine,
|
| 66 |
+
eps=norm_eps
|
| 67 |
+
)
|
| 68 |
+
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
|
| 69 |
+
|
| 70 |
+
def forward(
|
| 71 |
+
self,
|
| 72 |
+
hidden_states: torch.Tensor,
|
| 73 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 74 |
+
past_key_values: Optional[Cache] = None,
|
| 75 |
+
use_cache: Optional[bool] = False,
|
| 76 |
+
output_attentions: Optional[bool] = False,
|
| 77 |
+
lower_bound: Optional[torch.Tensor] = None,
|
| 78 |
+
**kwargs: Unpack[Dict]
|
| 79 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 80 |
+
if attention_mask is not None:
|
| 81 |
+
assert len(attention_mask.shape) == 2, (
|
| 82 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 83 |
+
"for padding purposes (0 indicating padding). "
|
| 84 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# launching the triton kernel for just one token will actually be slower
|
| 88 |
+
mode = 'fused_recurrent' if not self.training and hidden_states.shape[1] <= 64 else self.mode
|
| 89 |
+
|
| 90 |
+
last_state = None
|
| 91 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 92 |
+
last_state = past_key_values[self.layer_idx]
|
| 93 |
+
|
| 94 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 95 |
+
if self.use_short_conv:
|
| 96 |
+
conv_state_i, conv_state_f = None, None
|
| 97 |
+
if last_state is not None:
|
| 98 |
+
conv_state_i, conv_state_f = last_state['conv_state']
|
| 99 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 100 |
+
i, conv_state_i = self.i_conv1d(
|
| 101 |
+
x=self.i_proj(hidden_states),
|
| 102 |
+
mask=conv_mask,
|
| 103 |
+
cache=conv_state_i,
|
| 104 |
+
output_final_state=use_cache,
|
| 105 |
+
cu_seqlens=cu_seqlens
|
| 106 |
+
)
|
| 107 |
+
f, conv_state_f = self.f_conv1d(
|
| 108 |
+
x=self.f_proj(hidden_states),
|
| 109 |
+
mask=conv_mask,
|
| 110 |
+
cache=conv_state_f,
|
| 111 |
+
output_final_state=use_cache,
|
| 112 |
+
cu_seqlens=cu_seqlens
|
| 113 |
+
)
|
| 114 |
+
else:
|
| 115 |
+
i = self.i_proj(hidden_states)
|
| 116 |
+
f = self.f_proj(hidden_states)
|
| 117 |
+
|
| 118 |
+
# the lower bound for the first layer is zero
|
| 119 |
+
if lower_bound is None or self.layer_idx == 0:
|
| 120 |
+
i, f = swiglu(i, 1 - f.sigmoid()), F.logsigmoid(f)
|
| 121 |
+
else:
|
| 122 |
+
g = lower_bound + (1 - lower_bound) * f.sigmoid()
|
| 123 |
+
i, f = swiglu(i, 1 - g), g.log()
|
| 124 |
+
|
| 125 |
+
# dealing with left-padding
|
| 126 |
+
if attention_mask is not None:
|
| 127 |
+
i = i.mul_(attention_mask[:, -i.shape[-2]:, None])
|
| 128 |
+
|
| 129 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 130 |
+
if mode == 'chunk':
|
| 131 |
+
if cu_seqlens is not None:
|
| 132 |
+
raise NotImplementedError("Chunk mode does not support variable-length sequences.")
|
| 133 |
+
o, recurrent_state = chunk_hgrn(
|
| 134 |
+
x=i,
|
| 135 |
+
g=f,
|
| 136 |
+
initial_state=recurrent_state,
|
| 137 |
+
output_final_state=use_cache,
|
| 138 |
+
)
|
| 139 |
+
elif mode == 'fused_recurrent':
|
| 140 |
+
o, recurrent_state = fused_recurrent_hgrn(
|
| 141 |
+
x=i,
|
| 142 |
+
g=f,
|
| 143 |
+
initial_state=recurrent_state,
|
| 144 |
+
output_final_state=use_cache,
|
| 145 |
+
cu_seqlens=cu_seqlens
|
| 146 |
+
)
|
| 147 |
+
else:
|
| 148 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 149 |
+
|
| 150 |
+
if past_key_values is not None:
|
| 151 |
+
past_key_values.update(
|
| 152 |
+
recurrent_state=recurrent_state,
|
| 153 |
+
conv_state=(conv_state_i, conv_state_f) if self.use_short_conv else None,
|
| 154 |
+
layer_idx=self.layer_idx,
|
| 155 |
+
offset=i.shape[2]
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
o = self.g_norm(o, self.g_proj(hidden_states))
|
| 159 |
+
o = self.o_proj(o)
|
| 160 |
+
|
| 161 |
+
return o, None, past_key_values
|
| 162 |
+
|
| 163 |
+
def state_size(self, **kwargs) -> int:
|
| 164 |
+
state_size = self.hidden_size
|
| 165 |
+
for module in self.children():
|
| 166 |
+
if isinstance(module, ShortConvolution):
|
| 167 |
+
state_size += module.state_size
|
| 168 |
+
return state_size
|
fla/layers/hgrn2.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
# "HGRN2: Gated Linear RNNs with State Expansion"[https://arxiv.org/abs/2404.07904]
|
| 5 |
+
|
| 6 |
+
from __future__ import annotations
|
| 7 |
+
|
| 8 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
|
| 15 |
+
from fla.modules import RMSNorm, ShortConvolution
|
| 16 |
+
from fla.modules.activations import swish
|
| 17 |
+
from fla.modules.layernorm import rms_norm_linear
|
| 18 |
+
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
| 19 |
+
|
| 20 |
+
if TYPE_CHECKING:
|
| 21 |
+
from transformers.processing_utils import Unpack
|
| 22 |
+
|
| 23 |
+
from fla.models.utils import Cache
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class HGRN2Attention(nn.Module):
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
mode: str = 'chunk',
|
| 31 |
+
hidden_size: int = 1024,
|
| 32 |
+
num_heads: Optional[int] = None,
|
| 33 |
+
expand_ratio: Optional[int] = 128,
|
| 34 |
+
use_short_conv: bool = False,
|
| 35 |
+
conv_size: int = 4,
|
| 36 |
+
conv_bias: bool = False,
|
| 37 |
+
elementwise_affine: Optional[bool] = True,
|
| 38 |
+
norm_eps: float = 1e-5,
|
| 39 |
+
layer_idx: int = None
|
| 40 |
+
) -> HGRN2Attention:
|
| 41 |
+
super().__init__()
|
| 42 |
+
|
| 43 |
+
self.mode = mode
|
| 44 |
+
self.hidden_size = hidden_size
|
| 45 |
+
|
| 46 |
+
if expand_ratio is None and num_heads is not None:
|
| 47 |
+
expand_ratio = hidden_size // num_heads
|
| 48 |
+
elif expand_ratio is not None and num_heads is None:
|
| 49 |
+
num_heads = hidden_size // expand_ratio
|
| 50 |
+
elif expand_ratio is None and num_heads is None:
|
| 51 |
+
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
|
| 52 |
+
self.num_heads = num_heads
|
| 53 |
+
self.expand_ratio = expand_ratio
|
| 54 |
+
|
| 55 |
+
self.use_short_conv = use_short_conv
|
| 56 |
+
self.conv_size = conv_size
|
| 57 |
+
self.conv_bias = conv_bias
|
| 58 |
+
|
| 59 |
+
self.forget_dim = int(self.num_heads * self.expand_ratio)
|
| 60 |
+
self.input_dim = hidden_size
|
| 61 |
+
self.layer_idx = layer_idx
|
| 62 |
+
|
| 63 |
+
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
| 64 |
+
assert self.forget_dim % num_heads == 0, f"forget dim must be divisible by num_heads of {num_heads}"
|
| 65 |
+
assert self.input_dim % num_heads == 0, f"input dim must be divisible by num_heads of {num_heads}"
|
| 66 |
+
|
| 67 |
+
self.head_f_dim = self.expand_ratio
|
| 68 |
+
self.head_i_dim = self.hidden_size // num_heads
|
| 69 |
+
|
| 70 |
+
self.q_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
|
| 71 |
+
self.f_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
|
| 72 |
+
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
| 73 |
+
|
| 74 |
+
if use_short_conv:
|
| 75 |
+
self.conv_size = conv_size
|
| 76 |
+
self.q_conv1d = ShortConvolution(self.forget_dim, conv_size, activation=None)
|
| 77 |
+
self.f_conv1d = ShortConvolution(self.forget_dim, conv_size, activation=None)
|
| 78 |
+
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
| 79 |
+
|
| 80 |
+
self.g_norm = RMSNorm(hidden_size=self.hidden_size, elementwise_affine=elementwise_affine, eps=norm_eps)
|
| 81 |
+
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
|
| 82 |
+
|
| 83 |
+
def forward(
|
| 84 |
+
self,
|
| 85 |
+
hidden_states: torch.Tensor,
|
| 86 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 87 |
+
past_key_values: Optional[Cache] = None,
|
| 88 |
+
use_cache: Optional[bool] = False,
|
| 89 |
+
output_attentions: Optional[bool] = False,
|
| 90 |
+
lower_bound: Optional[torch.Tensor] = None,
|
| 91 |
+
**kwargs: Unpack[Dict]
|
| 92 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 93 |
+
if attention_mask is not None:
|
| 94 |
+
assert len(attention_mask.shape) == 2, (
|
| 95 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 96 |
+
"for padding purposes (0 indicating padding). "
|
| 97 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# launching the triton kernel for just one token will actually be slower
|
| 101 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 102 |
+
|
| 103 |
+
last_state = None
|
| 104 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 105 |
+
last_state = past_key_values[self.layer_idx]
|
| 106 |
+
|
| 107 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 108 |
+
if self.use_short_conv:
|
| 109 |
+
conv_state_q, conv_state_f, conv_state_i = None, None, None
|
| 110 |
+
if last_state is not None:
|
| 111 |
+
conv_state_q, conv_state_f, conv_state_i = last_state['conv_state']
|
| 112 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 113 |
+
q, conv_state_q = self.q_conv1d(
|
| 114 |
+
x=self.q_proj(hidden_states),
|
| 115 |
+
mask=conv_mask,
|
| 116 |
+
cache=conv_state_q,
|
| 117 |
+
output_final_state=use_cache,
|
| 118 |
+
cu_seqlens=cu_seqlens
|
| 119 |
+
)
|
| 120 |
+
f, conv_state_f = self.f_conv1d(
|
| 121 |
+
x=self.f_proj(hidden_states),
|
| 122 |
+
mask=conv_mask,
|
| 123 |
+
cache=conv_state_f,
|
| 124 |
+
output_final_state=use_cache,
|
| 125 |
+
cu_seqlens=cu_seqlens
|
| 126 |
+
)
|
| 127 |
+
i, conv_state_i = self.i_conv1d(
|
| 128 |
+
x=self.i_proj(hidden_states),
|
| 129 |
+
mask=conv_mask,
|
| 130 |
+
cache=conv_state_i,
|
| 131 |
+
output_final_state=use_cache,
|
| 132 |
+
cu_seqlens=cu_seqlens
|
| 133 |
+
)
|
| 134 |
+
else:
|
| 135 |
+
q = self.q_proj(hidden_states)
|
| 136 |
+
f = self.f_proj(hidden_states)
|
| 137 |
+
i = self.i_proj(hidden_states)
|
| 138 |
+
|
| 139 |
+
# dealing with left-padding
|
| 140 |
+
if attention_mask is not None:
|
| 141 |
+
i = i.mul_(attention_mask[:, -i.shape[-2]:, None])
|
| 142 |
+
|
| 143 |
+
q = swish(q)
|
| 144 |
+
|
| 145 |
+
# improve precision
|
| 146 |
+
f = f.float()
|
| 147 |
+
|
| 148 |
+
# the lower bound for the first layer is zero
|
| 149 |
+
if lower_bound is None or self.layer_idx == 0:
|
| 150 |
+
k, g = 1 - f.sigmoid(), F.logsigmoid(f)
|
| 151 |
+
else:
|
| 152 |
+
g = lower_bound + (1 - lower_bound) * f.sigmoid()
|
| 153 |
+
k, g = 1 - g, g.log()
|
| 154 |
+
|
| 155 |
+
q, k, g = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_f_dim), (q, k.to(i), g))
|
| 156 |
+
i = rearrange(i, '... (h d) -> ... h d', d=self.head_i_dim)
|
| 157 |
+
|
| 158 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 159 |
+
if mode == 'fused_recurrent':
|
| 160 |
+
o, recurrent_state = fused_recurrent_gla(
|
| 161 |
+
q=q,
|
| 162 |
+
k=k,
|
| 163 |
+
v=i,
|
| 164 |
+
gk=g,
|
| 165 |
+
initial_state=recurrent_state,
|
| 166 |
+
output_final_state=use_cache,
|
| 167 |
+
cu_seqlens=cu_seqlens,
|
| 168 |
+
head_first=False
|
| 169 |
+
)
|
| 170 |
+
elif mode == 'fused_chunk':
|
| 171 |
+
o, recurrent_state = fused_chunk_gla(
|
| 172 |
+
q=q,
|
| 173 |
+
k=k,
|
| 174 |
+
v=i,
|
| 175 |
+
g=g,
|
| 176 |
+
initial_state=recurrent_state,
|
| 177 |
+
output_final_state=use_cache,
|
| 178 |
+
head_first=False
|
| 179 |
+
)
|
| 180 |
+
elif mode == 'chunk':
|
| 181 |
+
o, recurrent_state = chunk_gla(
|
| 182 |
+
q=q,
|
| 183 |
+
k=k,
|
| 184 |
+
v=i,
|
| 185 |
+
g=g,
|
| 186 |
+
initial_state=recurrent_state,
|
| 187 |
+
output_final_state=use_cache,
|
| 188 |
+
cu_seqlens=cu_seqlens,
|
| 189 |
+
head_first=False
|
| 190 |
+
)
|
| 191 |
+
else:
|
| 192 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 193 |
+
|
| 194 |
+
if past_key_values is not None:
|
| 195 |
+
past_key_values.update(
|
| 196 |
+
recurrent_state=recurrent_state,
|
| 197 |
+
conv_state=(conv_state_q, conv_state_f, conv_state_i) if self.use_short_conv else None,
|
| 198 |
+
layer_idx=self.layer_idx,
|
| 199 |
+
offset=q.shape[1]
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
| 203 |
+
o = rms_norm_linear(o, self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
|
| 204 |
+
return o, None, past_key_values
|
| 205 |
+
|
| 206 |
+
def state_size(self, **kwargs) -> int:
|
| 207 |
+
state_size = self.forget_dim * self.head_i_dim
|
| 208 |
+
for module in self.children():
|
| 209 |
+
if isinstance(module, ShortConvolution):
|
| 210 |
+
state_size += module.state_size
|
| 211 |
+
return state_size
|
fla/layers/lightnet.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
# ["You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet"](https://arxiv.org/abs/2405.21022)
|
| 5 |
+
|
| 6 |
+
from __future__ import annotations
|
| 7 |
+
|
| 8 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
|
| 15 |
+
from fla.modules import FusedRMSNormGated, ShortConvolution
|
| 16 |
+
from fla.modules.fused_norm_gate import rms_norm_swish_gate_linear
|
| 17 |
+
from fla.ops.gla import chunk_gla, fused_recurrent_gla
|
| 18 |
+
|
| 19 |
+
if TYPE_CHECKING:
|
| 20 |
+
from transformers.processing_utils import Unpack
|
| 21 |
+
|
| 22 |
+
from fla.models.utils import Cache
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class LightNetAttention(nn.Module):
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
mode: str = 'chunk',
|
| 30 |
+
hidden_size: int = 1024,
|
| 31 |
+
num_heads: Optional[int] = None,
|
| 32 |
+
expand_ratio: Optional[int] = 128,
|
| 33 |
+
use_short_conv: bool = False,
|
| 34 |
+
conv_size: int = 4,
|
| 35 |
+
conv_bias: bool = False,
|
| 36 |
+
gate_low_rank_dim: int = 128,
|
| 37 |
+
elementwise_affine: Optional[bool] = True,
|
| 38 |
+
norm_eps: float = 1e-5,
|
| 39 |
+
layer_idx: int = None
|
| 40 |
+
) -> LightNetAttention:
|
| 41 |
+
super().__init__()
|
| 42 |
+
|
| 43 |
+
self.mode = mode
|
| 44 |
+
self.hidden_size = hidden_size
|
| 45 |
+
|
| 46 |
+
if expand_ratio is None and num_heads is not None:
|
| 47 |
+
expand_ratio = hidden_size // num_heads
|
| 48 |
+
elif expand_ratio is not None and num_heads is None:
|
| 49 |
+
num_heads = hidden_size // expand_ratio
|
| 50 |
+
elif expand_ratio is None and num_heads is None:
|
| 51 |
+
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
|
| 52 |
+
self.num_heads = num_heads
|
| 53 |
+
self.expand_ratio = expand_ratio
|
| 54 |
+
|
| 55 |
+
self.use_short_conv = use_short_conv
|
| 56 |
+
self.conv_size = conv_size
|
| 57 |
+
self.conv_bias = conv_bias
|
| 58 |
+
|
| 59 |
+
self.key_dim = int(self.num_heads * self.expand_ratio)
|
| 60 |
+
self.value_dim = hidden_size
|
| 61 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
| 62 |
+
self.layer_idx = layer_idx
|
| 63 |
+
|
| 64 |
+
assert mode in ['chunk', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
| 65 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
| 66 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
| 67 |
+
|
| 68 |
+
self.head_f_dim = self.expand_ratio
|
| 69 |
+
self.head_i_dim = self.hidden_size // num_heads
|
| 70 |
+
|
| 71 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 72 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 73 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 74 |
+
|
| 75 |
+
if use_short_conv:
|
| 76 |
+
self.conv_size = conv_size
|
| 77 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None)
|
| 78 |
+
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None)
|
| 79 |
+
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation=None)
|
| 80 |
+
|
| 81 |
+
self.g_proj = nn.Sequential(
|
| 82 |
+
nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
|
| 83 |
+
nn.Linear(gate_low_rank_dim, hidden_size, bias=False)
|
| 84 |
+
)
|
| 85 |
+
self.g_norm = FusedRMSNormGated(
|
| 86 |
+
hidden_size=hidden_size,
|
| 87 |
+
elementwise_affine=elementwise_affine,
|
| 88 |
+
eps=norm_eps
|
| 89 |
+
)
|
| 90 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
| 91 |
+
|
| 92 |
+
def forward(
|
| 93 |
+
self,
|
| 94 |
+
hidden_states: torch.Tensor,
|
| 95 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 96 |
+
past_key_values: Optional[Cache] = None,
|
| 97 |
+
use_cache: Optional[bool] = False,
|
| 98 |
+
output_attentions: Optional[bool] = False,
|
| 99 |
+
**kwargs: Unpack[Dict]
|
| 100 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 101 |
+
if attention_mask is not None:
|
| 102 |
+
assert len(attention_mask.shape) == 2, (
|
| 103 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 104 |
+
"for padding purposes (0 indicating padding). "
|
| 105 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# launching the triton kernel for just one token will actually be slower
|
| 109 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 110 |
+
|
| 111 |
+
last_state = None
|
| 112 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 113 |
+
last_state = past_key_values[self.layer_idx]
|
| 114 |
+
|
| 115 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 116 |
+
if self.use_short_conv:
|
| 117 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 118 |
+
if last_state is not None:
|
| 119 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
| 120 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 121 |
+
q, conv_state_q = self.q_conv1d(
|
| 122 |
+
x=self.q_proj(hidden_states),
|
| 123 |
+
mask=conv_mask,
|
| 124 |
+
cache=conv_state_q,
|
| 125 |
+
output_final_state=use_cache,
|
| 126 |
+
cu_seqlens=cu_seqlens
|
| 127 |
+
)
|
| 128 |
+
k, conv_state_k = self.k_conv1d(
|
| 129 |
+
x=self.k_proj(hidden_states),
|
| 130 |
+
mask=conv_mask,
|
| 131 |
+
cache=conv_state_k,
|
| 132 |
+
output_final_state=use_cache,
|
| 133 |
+
cu_seqlens=cu_seqlens
|
| 134 |
+
)
|
| 135 |
+
v, conv_state_v = self.v_conv1d(
|
| 136 |
+
x=self.v_proj(hidden_states),
|
| 137 |
+
mask=conv_mask,
|
| 138 |
+
cache=conv_state_v,
|
| 139 |
+
output_final_state=use_cache,
|
| 140 |
+
cu_seqlens=cu_seqlens
|
| 141 |
+
)
|
| 142 |
+
else:
|
| 143 |
+
q = self.q_proj(hidden_states)
|
| 144 |
+
k = self.k_proj(hidden_states)
|
| 145 |
+
v = self.v_proj(hidden_states)
|
| 146 |
+
|
| 147 |
+
# dealing with left-padding
|
| 148 |
+
if attention_mask is not None:
|
| 149 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
| 150 |
+
|
| 151 |
+
q = F.silu(q)
|
| 152 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_f_dim), (q, k))
|
| 153 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_i_dim)
|
| 154 |
+
# TODO: this 2 steps took huge amount of time, which should be optimized
|
| 155 |
+
z = k.float().logcumsumexp(1)
|
| 156 |
+
|
| 157 |
+
if cu_seqlens is not None:
|
| 158 |
+
raise NotImplementedError("LightNet does not support variable-length sequences for now.")
|
| 159 |
+
k, g = torch.exp(k - z).to(k.dtype), (torch.cat((z[:, :1], z[:, :-1]), 1) - z).to(k.dtype)
|
| 160 |
+
|
| 161 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 162 |
+
if mode == 'fused_recurrent':
|
| 163 |
+
o, recurrent_state = fused_recurrent_gla(
|
| 164 |
+
q=q,
|
| 165 |
+
k=k,
|
| 166 |
+
v=v,
|
| 167 |
+
gk=g,
|
| 168 |
+
initial_state=recurrent_state,
|
| 169 |
+
output_final_state=use_cache,
|
| 170 |
+
cu_seqlens=cu_seqlens,
|
| 171 |
+
head_first=False
|
| 172 |
+
)
|
| 173 |
+
elif mode == 'chunk':
|
| 174 |
+
o, recurrent_state = chunk_gla(
|
| 175 |
+
q=q,
|
| 176 |
+
k=k,
|
| 177 |
+
v=v,
|
| 178 |
+
g=g,
|
| 179 |
+
initial_state=recurrent_state,
|
| 180 |
+
output_final_state=use_cache,
|
| 181 |
+
cu_seqlens=cu_seqlens,
|
| 182 |
+
head_first=False
|
| 183 |
+
)
|
| 184 |
+
else:
|
| 185 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 186 |
+
|
| 187 |
+
if past_key_values is not None:
|
| 188 |
+
past_key_values.update(
|
| 189 |
+
recurrent_state=recurrent_state,
|
| 190 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
| 191 |
+
layer_idx=self.layer_idx,
|
| 192 |
+
offset=q.shape[1]
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
o = rms_norm_swish_gate_linear(
|
| 196 |
+
rearrange(o, 'b t h d -> b t (h d)'),
|
| 197 |
+
self.g_proj(hidden_states),
|
| 198 |
+
self.g_norm.weight,
|
| 199 |
+
self.g_norm.bias,
|
| 200 |
+
self.o_proj.weight,
|
| 201 |
+
self.o_proj.bias
|
| 202 |
+
)
|
| 203 |
+
return o, None, past_key_values
|
| 204 |
+
|
| 205 |
+
def state_size(self, **kwargs) -> int:
|
| 206 |
+
state_size = self.key_dim * self.head_i_dim
|
| 207 |
+
for module in self.children():
|
| 208 |
+
if isinstance(module, ShortConvolution):
|
| 209 |
+
state_size += module.state_size
|
| 210 |
+
return state_size
|
fla/layers/linear_attn.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from einops import rearrange, repeat
|
| 10 |
+
|
| 11 |
+
from fla.modules import RMSNorm
|
| 12 |
+
from fla.modules.feature_map import DPFPFeatureMap, HadamardFeatureMap, HedgehogFeatureMap, T2RFeatureMap
|
| 13 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn, fused_recurrent_linear_attn
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class LinearAttention(nn.Module):
|
| 17 |
+
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
mode: str = 'chunk',
|
| 21 |
+
hidden_size: str = 1024,
|
| 22 |
+
expand_k: int = 1.0,
|
| 23 |
+
expand_v: int = 1.0,
|
| 24 |
+
num_heads: int = 8,
|
| 25 |
+
num_kv_heads: Optional[int] = None,
|
| 26 |
+
feature_map: str = 'elementwise_product',
|
| 27 |
+
tie_feature_map_qk: bool = False,
|
| 28 |
+
output_norm: str = 'rmsnorm',
|
| 29 |
+
norm_q: bool = False,
|
| 30 |
+
norm_k: bool = False,
|
| 31 |
+
do_feature_map_norm: bool = False,
|
| 32 |
+
elementwise_affine: bool = True,
|
| 33 |
+
norm_eps: float = 1e-5,
|
| 34 |
+
**kwargs
|
| 35 |
+
):
|
| 36 |
+
super().__init__()
|
| 37 |
+
|
| 38 |
+
self.hidden_size = hidden_size
|
| 39 |
+
self.mode = mode
|
| 40 |
+
self.num_heads = num_heads
|
| 41 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
| 42 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
| 43 |
+
self.key_dim = int(hidden_size * expand_k)
|
| 44 |
+
self.value_dim = int(hidden_size * expand_v)
|
| 45 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
| 46 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
| 47 |
+
|
| 48 |
+
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
| 49 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
| 50 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
| 51 |
+
|
| 52 |
+
self.head_k_dim = self.key_dim // num_heads
|
| 53 |
+
self.head_v_dim = self.value_dim // num_heads
|
| 54 |
+
self.do_feature_map_norm = do_feature_map_norm
|
| 55 |
+
|
| 56 |
+
if feature_map == 'hedgehog':
|
| 57 |
+
if tie_feature_map_qk:
|
| 58 |
+
self.feature_map_q = self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_k_dim)
|
| 59 |
+
else:
|
| 60 |
+
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_k_dim)
|
| 61 |
+
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_k_dim)
|
| 62 |
+
|
| 63 |
+
elif feature_map == 't2r':
|
| 64 |
+
if tie_feature_map_qk:
|
| 65 |
+
self.feature_map_q = self.feature_map_k = T2RFeatureMap(head_dim=self.head_k_dim)
|
| 66 |
+
else:
|
| 67 |
+
self.feature_map_q = T2RFeatureMap(head_dim=self.head_k_dim)
|
| 68 |
+
self.feature_map_k = T2RFeatureMap(head_dim=self.head_k_dim)
|
| 69 |
+
|
| 70 |
+
elif feature_map == 'elementwise_product':
|
| 71 |
+
if tie_feature_map_qk:
|
| 72 |
+
self.feature_map_q = self.feature_map_k = HadamardFeatureMap(head_dim=self.head_k_dim)
|
| 73 |
+
else:
|
| 74 |
+
self.feature_map_q = HadamardFeatureMap(head_dim=self.head_k_dim)
|
| 75 |
+
self.feature_map_k = HadamardFeatureMap(head_dim=self.head_k_dim)
|
| 76 |
+
|
| 77 |
+
elif feature_map == 'dpfp':
|
| 78 |
+
self.feature_map_q = DPFPFeatureMap(head_dim=self.head_k_dim)
|
| 79 |
+
self.feature_map_k = DPFPFeatureMap(head_dim=self.head_k_dim)
|
| 80 |
+
|
| 81 |
+
elif feature_map == 'elu':
|
| 82 |
+
def elu(x):
|
| 83 |
+
return F.elu(x) + 1
|
| 84 |
+
self.feature_map_q = elu
|
| 85 |
+
self.feature_map_k = elu
|
| 86 |
+
|
| 87 |
+
elif feature_map == 'relu':
|
| 88 |
+
self.feature_map_q = nn.ReLU()
|
| 89 |
+
self.feature_map_k = nn.ReLU()
|
| 90 |
+
|
| 91 |
+
elif feature_map == 'identity':
|
| 92 |
+
self.feature_map_q = nn.Identity()
|
| 93 |
+
self.feature_map_k = nn.Identity()
|
| 94 |
+
else:
|
| 95 |
+
raise NotImplementedError(f"Not supported feature map `{feature_map}`.")
|
| 96 |
+
|
| 97 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 98 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
| 99 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
| 100 |
+
|
| 101 |
+
if output_norm == 'rmsnorm':
|
| 102 |
+
self.norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps)
|
| 103 |
+
elif output_norm == 'identity':
|
| 104 |
+
self.norm = nn.Identity()
|
| 105 |
+
else:
|
| 106 |
+
raise NotImplementedError(f"Not supported output norm `{output_norm}`.")
|
| 107 |
+
|
| 108 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
| 109 |
+
|
| 110 |
+
self.norm_q = norm_q
|
| 111 |
+
self.norm_k = norm_k
|
| 112 |
+
|
| 113 |
+
def forward(
|
| 114 |
+
self,
|
| 115 |
+
hidden_states: torch.Tensor,
|
| 116 |
+
**kwargs
|
| 117 |
+
) -> torch.Tensor:
|
| 118 |
+
mode = self.mode
|
| 119 |
+
q = self.q_proj(hidden_states)
|
| 120 |
+
k = self.k_proj(hidden_states)
|
| 121 |
+
v = self.v_proj(hidden_states)
|
| 122 |
+
|
| 123 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_k_dim)
|
| 124 |
+
if self.num_kv_groups > 1:
|
| 125 |
+
k = repeat(k, '... (h d) -> ... (h g) d', d=self.head_k_dim, g=self.num_kv_groups)
|
| 126 |
+
v = repeat(v, '... (h d) -> ... (h g) d', d=self.head_v_dim, g=self.num_kv_groups)
|
| 127 |
+
else:
|
| 128 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_k_dim)
|
| 129 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
| 130 |
+
|
| 131 |
+
q = self.feature_map_q(q)
|
| 132 |
+
k = self.feature_map_k(k)
|
| 133 |
+
|
| 134 |
+
if self.norm_q:
|
| 135 |
+
q = q / (q.sum(-1, True) + 1e-4)
|
| 136 |
+
if self.norm_k:
|
| 137 |
+
k = k / (k.sum(-1, True) + 1e-4)
|
| 138 |
+
|
| 139 |
+
if mode == 'chunk':
|
| 140 |
+
o, final_state = chunk_linear_attn(
|
| 141 |
+
q=q,
|
| 142 |
+
k=k,
|
| 143 |
+
v=v,
|
| 144 |
+
normalize=self.do_feature_map_norm,
|
| 145 |
+
head_first=False
|
| 146 |
+
)
|
| 147 |
+
elif mode == 'fused_chunk':
|
| 148 |
+
o, final_state = fused_chunk_linear_attn(
|
| 149 |
+
q=q,
|
| 150 |
+
k=k,
|
| 151 |
+
v=v,
|
| 152 |
+
normalize=self.do_feature_map_norm,
|
| 153 |
+
)
|
| 154 |
+
elif mode == 'fused_recurrent':
|
| 155 |
+
o, final_state = fused_recurrent_linear_attn(
|
| 156 |
+
q=q,
|
| 157 |
+
k=k,
|
| 158 |
+
v=v,
|
| 159 |
+
normalize=self.do_feature_map_norm,
|
| 160 |
+
)
|
| 161 |
+
else:
|
| 162 |
+
raise NotImplementedError
|
| 163 |
+
o = self.norm(o)
|
| 164 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
| 165 |
+
o = self.o_proj(o)
|
| 166 |
+
return o
|
fla/layers/multiscale_retention.py
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from einops import rearrange, repeat
|
| 11 |
+
from transformers.activations import ACT2FN
|
| 12 |
+
|
| 13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
| 14 |
+
from fla.modules.rotary import RotaryEmbedding
|
| 15 |
+
from fla.ops.retention import chunk_retention, fused_chunk_retention, fused_recurrent_retention, parallel_retention
|
| 16 |
+
|
| 17 |
+
if TYPE_CHECKING:
|
| 18 |
+
from fla.models.utils import Cache
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class MultiScaleRetention(nn.Module):
|
| 22 |
+
r"""
|
| 23 |
+
The layer implementaion for [Retentive Network: A Successor to Transformer for Large Language Models](https://arxiv.org/pdf/2307.08621.pdf). # noqa
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
mode (str, Optional):
|
| 27 |
+
Which Retention kernel to use.
|
| 28 |
+
Currently available: `chunk`, `fused_recurrent`, `parallel`, and `fused_chunk`.
|
| 29 |
+
Default: `chunk`.
|
| 30 |
+
hidden_size (int, Optional):
|
| 31 |
+
The hidden size of the input. Default: 1024.
|
| 32 |
+
expand_k (float, Optional):
|
| 33 |
+
The expansion ratio for the key dim. Default: 1.0.
|
| 34 |
+
expand_v (float, Optional):
|
| 35 |
+
The expansion ratio for the value dim. Default: 2.0.
|
| 36 |
+
num_heads (int, Optional):
|
| 37 |
+
The number of heads. Default: 8.
|
| 38 |
+
num_kv_heads (int, Optional):
|
| 39 |
+
The number of key/value heads, used for MQA. Default: None.
|
| 40 |
+
feature_map (str, Optional):
|
| 41 |
+
Feature map function applied to queries/keys. Default: None.
|
| 42 |
+
use_short_conv (bool, Optional):
|
| 43 |
+
Whether to use short convolutions. Default: `False`.
|
| 44 |
+
conv_size (int, Optional):
|
| 45 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
| 46 |
+
conv_bias (bool, Optional):
|
| 47 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
| 48 |
+
use_output_gate (bool, Optional):
|
| 49 |
+
Whether to use output gate. Default: `True`.
|
| 50 |
+
gate_fn (str, Optional):
|
| 51 |
+
The activation function for the output gate. Default: `swish`.
|
| 52 |
+
elementwise_affine (bool, Optional):
|
| 53 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
| 54 |
+
norm_eps (float, Optional):
|
| 55 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
| 56 |
+
fuse_norm (bool, Optional):
|
| 57 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
| 58 |
+
layer_idx (int, Optional):
|
| 59 |
+
The index of the layer. Default: None.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
mode: str = 'chunk',
|
| 65 |
+
hidden_size: int = 1024,
|
| 66 |
+
expand_k: float = 1.0,
|
| 67 |
+
expand_v: float = 2.0,
|
| 68 |
+
num_heads: int = 8,
|
| 69 |
+
num_kv_heads: Optional[int] = None,
|
| 70 |
+
feature_map: Optional[str] = None,
|
| 71 |
+
use_short_conv: bool = False,
|
| 72 |
+
conv_size: int = 4,
|
| 73 |
+
conv_bias: bool = False,
|
| 74 |
+
use_output_gate: bool = True,
|
| 75 |
+
gate_fn: str = 'swish',
|
| 76 |
+
elementwise_affine: Optional[bool] = True,
|
| 77 |
+
norm_eps: float = 1e-5,
|
| 78 |
+
fuse_norm: bool = True,
|
| 79 |
+
layer_idx: int = None,
|
| 80 |
+
**kwargs
|
| 81 |
+
) -> MultiScaleRetention:
|
| 82 |
+
super().__init__()
|
| 83 |
+
|
| 84 |
+
self.mode = mode
|
| 85 |
+
self.hidden_size = hidden_size
|
| 86 |
+
self.expand_k = expand_k
|
| 87 |
+
self.expand_v = expand_v
|
| 88 |
+
self.num_heads = num_heads
|
| 89 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
| 90 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
| 91 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
| 92 |
+
|
| 93 |
+
self.use_short_conv = use_short_conv
|
| 94 |
+
self.conv_size = conv_size
|
| 95 |
+
self.conv_bias = conv_bias
|
| 96 |
+
self.use_output_gate = use_output_gate
|
| 97 |
+
|
| 98 |
+
self.key_dim = int(hidden_size * expand_k)
|
| 99 |
+
self.value_dim = int(hidden_size * expand_v)
|
| 100 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
| 101 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
| 102 |
+
self.layer_idx = layer_idx
|
| 103 |
+
|
| 104 |
+
assert mode in ['chunk', 'fused_chunk', 'parallel', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
| 105 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
| 106 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
| 107 |
+
|
| 108 |
+
self.head_k_dim = self.key_dim // num_heads
|
| 109 |
+
self.head_v_dim = self.value_dim // num_heads
|
| 110 |
+
|
| 111 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
| 112 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
| 113 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
| 114 |
+
if self.use_output_gate:
|
| 115 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
| 116 |
+
|
| 117 |
+
if use_short_conv:
|
| 118 |
+
self.conv_size = conv_size
|
| 119 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
| 120 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
| 121 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
| 122 |
+
|
| 123 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
| 124 |
+
|
| 125 |
+
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
| 126 |
+
self.g_norm_swish_gate = FusedRMSNormGated(
|
| 127 |
+
hidden_size=self.head_v_dim,
|
| 128 |
+
elementwise_affine=elementwise_affine,
|
| 129 |
+
eps=norm_eps
|
| 130 |
+
)
|
| 131 |
+
self.fuse_norm_and_gate = True
|
| 132 |
+
else:
|
| 133 |
+
self.fuse_norm_and_gate = False
|
| 134 |
+
self.g_norm = RMSNorm(
|
| 135 |
+
hidden_size=self.head_v_dim,
|
| 136 |
+
elementwise_affine=elementwise_affine,
|
| 137 |
+
eps=norm_eps
|
| 138 |
+
)
|
| 139 |
+
self.gate_fn = ACT2FN[gate_fn]
|
| 140 |
+
|
| 141 |
+
# TODO: fix this issue
|
| 142 |
+
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py#L180
|
| 143 |
+
# Ideally, we would want to support arbitrary d_head_qk
|
| 144 |
+
assert self.head_k_dim <= 256, "head_k_dim must be less than or equal to 256"
|
| 145 |
+
self.rotary = RotaryEmbedding(dim=self.head_k_dim)
|
| 146 |
+
|
| 147 |
+
def forward(
|
| 148 |
+
self,
|
| 149 |
+
hidden_states: torch.Tensor,
|
| 150 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 151 |
+
past_key_values: Optional[Cache] = None,
|
| 152 |
+
use_cache: Optional[bool] = False,
|
| 153 |
+
output_attentions: Optional[bool] = False,
|
| 154 |
+
**kwargs
|
| 155 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 156 |
+
if attention_mask is not None:
|
| 157 |
+
assert len(attention_mask.shape) == 2, (
|
| 158 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 159 |
+
"for padding purposes (0 indicating padding). "
|
| 160 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# launching the triton kernel for just one token will actually be slower
|
| 164 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 165 |
+
|
| 166 |
+
last_state = None
|
| 167 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
| 168 |
+
last_state = past_key_values[self.layer_idx]
|
| 169 |
+
|
| 170 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 171 |
+
if self.use_short_conv:
|
| 172 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 173 |
+
if last_state is not None:
|
| 174 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
| 175 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
| 176 |
+
q, conv_state_q = self.q_conv1d(
|
| 177 |
+
x=self.q_proj(hidden_states),
|
| 178 |
+
mask=conv_mask,
|
| 179 |
+
cache=conv_state_q,
|
| 180 |
+
output_final_state=use_cache,
|
| 181 |
+
cu_seqlens=cu_seqlens
|
| 182 |
+
)
|
| 183 |
+
k, conv_state_k = self.k_conv1d(
|
| 184 |
+
x=self.k_proj(hidden_states),
|
| 185 |
+
mask=conv_mask,
|
| 186 |
+
cache=conv_state_k,
|
| 187 |
+
output_final_state=use_cache,
|
| 188 |
+
cu_seqlens=cu_seqlens
|
| 189 |
+
)
|
| 190 |
+
v, conv_state_v = self.v_conv1d(
|
| 191 |
+
x=self.v_proj(hidden_states),
|
| 192 |
+
mask=conv_mask,
|
| 193 |
+
cache=conv_state_v,
|
| 194 |
+
output_final_state=use_cache,
|
| 195 |
+
cu_seqlens=cu_seqlens
|
| 196 |
+
)
|
| 197 |
+
else:
|
| 198 |
+
q = self.q_proj(hidden_states)
|
| 199 |
+
k = self.k_proj(hidden_states)
|
| 200 |
+
v = self.v_proj(hidden_states)
|
| 201 |
+
|
| 202 |
+
# dealing with left-padding
|
| 203 |
+
if attention_mask is not None:
|
| 204 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
| 205 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_k_dim)
|
| 206 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_k_dim)
|
| 207 |
+
if self.feature_map_fn is not None:
|
| 208 |
+
q, k = map(self.feature_map_fn, (q, k))
|
| 209 |
+
|
| 210 |
+
seqlen_offset, max_seqlen = 0, q.shape[1]
|
| 211 |
+
if past_key_values is not None:
|
| 212 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
| 213 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
| 214 |
+
|
| 215 |
+
if attention_mask is not None:
|
| 216 |
+
# to deliminate the offsets of padding tokens
|
| 217 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
| 218 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
| 219 |
+
|
| 220 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
| 221 |
+
|
| 222 |
+
if self.num_kv_groups > 1:
|
| 223 |
+
k = repeat(k, 'b t h d -> b t (h g) d', g=self.num_kv_groups)
|
| 224 |
+
v = repeat(v, 'b t (h d) -> b t (h g) d', d=self.head_v_dim, g=self.num_kv_groups)
|
| 225 |
+
else:
|
| 226 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
| 227 |
+
|
| 228 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
| 229 |
+
if mode == 'chunk':
|
| 230 |
+
o, recurrent_state = chunk_retention(
|
| 231 |
+
q=q,
|
| 232 |
+
k=k,
|
| 233 |
+
v=v,
|
| 234 |
+
initial_state=recurrent_state,
|
| 235 |
+
output_final_state=use_cache,
|
| 236 |
+
cu_seqlens=cu_seqlens,
|
| 237 |
+
head_first=False
|
| 238 |
+
)
|
| 239 |
+
elif mode == 'fused_chunk':
|
| 240 |
+
o, recurrent_state = fused_chunk_retention(
|
| 241 |
+
q=q,
|
| 242 |
+
k=k,
|
| 243 |
+
v=v,
|
| 244 |
+
initial_state=recurrent_state,
|
| 245 |
+
output_final_state=use_cache,
|
| 246 |
+
cu_seqlens=cu_seqlens,
|
| 247 |
+
head_first=False
|
| 248 |
+
)
|
| 249 |
+
elif mode == 'parallel':
|
| 250 |
+
o, recurrent_state = parallel_retention(
|
| 251 |
+
q=q,
|
| 252 |
+
k=k,
|
| 253 |
+
v=v,
|
| 254 |
+
cu_seqlens=cu_seqlens,
|
| 255 |
+
head_first=False
|
| 256 |
+
)
|
| 257 |
+
elif mode == 'fused_recurrent':
|
| 258 |
+
o, recurrent_state = fused_recurrent_retention(
|
| 259 |
+
q=q,
|
| 260 |
+
k=k,
|
| 261 |
+
v=v,
|
| 262 |
+
initial_state=recurrent_state,
|
| 263 |
+
output_final_state=use_cache,
|
| 264 |
+
cu_seqlens=cu_seqlens,
|
| 265 |
+
head_first=False
|
| 266 |
+
)
|
| 267 |
+
else:
|
| 268 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
| 269 |
+
|
| 270 |
+
if past_key_values is not None:
|
| 271 |
+
past_key_values.update(
|
| 272 |
+
recurrent_state=recurrent_state,
|
| 273 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
| 274 |
+
layer_idx=self.layer_idx,
|
| 275 |
+
offset=q.shape[1]
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
if self.use_output_gate:
|
| 279 |
+
g = self.g_proj(hidden_states)
|
| 280 |
+
if self.fuse_norm_and_gate:
|
| 281 |
+
g = rearrange(g, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
| 282 |
+
o = self.g_norm_swish_gate(o, g)
|
| 283 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
| 284 |
+
else:
|
| 285 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
| 286 |
+
o = o * self.gate_fn(g)
|
| 287 |
+
else:
|
| 288 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
| 289 |
+
o = self.o_proj(o)
|
| 290 |
+
|
| 291 |
+
return o, None, past_key_values
|
| 292 |
+
|
| 293 |
+
def state_size(self, **kwargs) -> int:
|
| 294 |
+
state_size = self.key_dim * self.head_v_dim
|
| 295 |
+
for module in self.children():
|
| 296 |
+
if isinstance(module, ShortConvolution):
|
| 297 |
+
state_size += module.state_size
|
| 298 |
+
return state_size
|
fla/layers/nsa.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
from fla.modules import RotaryEmbedding
|
| 14 |
+
from fla.ops.nsa.parallel import parallel_nsa
|
| 15 |
+
|
| 16 |
+
if TYPE_CHECKING:
|
| 17 |
+
from fla.models.utils import Cache
|
| 18 |
+
|
| 19 |
+
logger = logging.get_logger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class NativeSparseAttention(nn.Module):
|
| 23 |
+
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
hidden_size: int = 2048,
|
| 27 |
+
num_heads: int = 64,
|
| 28 |
+
num_kv_heads: Optional[int] = 4,
|
| 29 |
+
head_dim: int = 64,
|
| 30 |
+
qkv_bias: bool = False,
|
| 31 |
+
block_size: Optional[int] = 64,
|
| 32 |
+
block_counts: Optional[Union[torch.LongTensor, int]] = 16,
|
| 33 |
+
window_size: Optional[int] = 512,
|
| 34 |
+
rope_theta: Optional[float] = 10000.,
|
| 35 |
+
max_position_embeddings: Optional[int] = None,
|
| 36 |
+
layer_idx: int = None
|
| 37 |
+
):
|
| 38 |
+
super().__init__()
|
| 39 |
+
|
| 40 |
+
self.hidden_size = hidden_size
|
| 41 |
+
self.num_heads = num_heads
|
| 42 |
+
if num_kv_heads is None:
|
| 43 |
+
self.num_kv_heads = self.num_heads
|
| 44 |
+
else:
|
| 45 |
+
self.num_kv_heads = num_kv_heads
|
| 46 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
| 47 |
+
self.head_dim = head_dim
|
| 48 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
| 49 |
+
self.qkv_bias = qkv_bias
|
| 50 |
+
|
| 51 |
+
self.block_size = block_size
|
| 52 |
+
self.block_counts = block_counts
|
| 53 |
+
self.window_size = window_size
|
| 54 |
+
self.rope_theta = rope_theta
|
| 55 |
+
self.max_position_embeddings = max_position_embeddings
|
| 56 |
+
self.layer_idx = layer_idx
|
| 57 |
+
|
| 58 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.qkv_bias)
|
| 59 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
| 60 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
| 61 |
+
self.g_proj = nn.Linear(self.hidden_size, self.num_heads * 3, bias=False)
|
| 62 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 63 |
+
|
| 64 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
| 65 |
+
|
| 66 |
+
def forward(
|
| 67 |
+
self,
|
| 68 |
+
hidden_states: torch.Tensor,
|
| 69 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 70 |
+
past_key_values: Optional[Cache] = None,
|
| 71 |
+
output_attentions: bool = False,
|
| 72 |
+
use_cache: bool = False,
|
| 73 |
+
**kwargs,
|
| 74 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 75 |
+
if attention_mask is not None:
|
| 76 |
+
assert len(attention_mask.shape) == 2, (
|
| 77 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 78 |
+
"for padding purposes (0 indicating padding). "
|
| 79 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
batch_size, seq_len, _ = hidden_states.size()
|
| 83 |
+
|
| 84 |
+
q = rearrange(self.q_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
| 85 |
+
k = rearrange(self.k_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
| 86 |
+
v = rearrange(self.v_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
| 87 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=3)
|
| 88 |
+
g_cmp, g_slc, g_swa = g.sigmoid().unbind(-1)
|
| 89 |
+
|
| 90 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 91 |
+
|
| 92 |
+
seqlen_offset, max_seqlen = 0, seq_len
|
| 93 |
+
if past_key_values is not None:
|
| 94 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
| 95 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
| 96 |
+
|
| 97 |
+
if attention_mask is not None:
|
| 98 |
+
# to deliminate the offsets of padding tokens
|
| 99 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
| 100 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
| 101 |
+
|
| 102 |
+
if self.max_position_embeddings is not None:
|
| 103 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
| 104 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
| 105 |
+
|
| 106 |
+
if past_key_values is not None:
|
| 107 |
+
cache_has_content = past_key_values.get_seq_length(self.layer_idx) > 0
|
| 108 |
+
k_cached, v_cached = past_key_values.update(
|
| 109 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
| 110 |
+
layer_idx=self.layer_idx,
|
| 111 |
+
offset=seq_len,
|
| 112 |
+
cache_kwargs=dict(window_size=self.window_size)
|
| 113 |
+
)['attn_state']
|
| 114 |
+
if cache_has_content:
|
| 115 |
+
k, v = k_cached, v_cached
|
| 116 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
| 117 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
| 118 |
+
|
| 119 |
+
o = parallel_nsa(
|
| 120 |
+
q=q,
|
| 121 |
+
k=k,
|
| 122 |
+
v=v,
|
| 123 |
+
g_cmp=g_cmp,
|
| 124 |
+
g_slc=g_slc,
|
| 125 |
+
g_swa=g_swa,
|
| 126 |
+
block_size=self.block_size,
|
| 127 |
+
block_counts=self.block_counts,
|
| 128 |
+
window_size=self.window_size,
|
| 129 |
+
cu_seqlens=cu_seqlens,
|
| 130 |
+
head_first=False
|
| 131 |
+
)
|
| 132 |
+
o = o.reshape(batch_size, seq_len, -1)
|
| 133 |
+
o = self.o_proj(o)
|
| 134 |
+
|
| 135 |
+
if not output_attentions:
|
| 136 |
+
attentions = None
|
| 137 |
+
|
| 138 |
+
return o, attentions, past_key_values
|