program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.8.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})] { func main(tensor embeddings) { tensor plda_tr = const()[name = tensor("plda_tr"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor mu = const()[name = tensor("mu"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(65664)))]; tensor lda_dim_scale = const()[name = tensor("lda_dim_scale"), val = tensor(0x1.6a09e6p+3)]; tensor mean2 = const()[name = tensor("mean2"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66240)))]; tensor lda_scale = const()[name = tensor("lda_scale"), val = tensor(0x1p+4)]; tensor mean1 = const()[name = tensor("mean1"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66816)))]; tensor x_1 = sub(x = embeddings, y = mean1)[name = tensor("x_1")]; tensor var_11 = mul(x = x_1, y = x_1)[name = tensor("op_11")]; tensor var_16_axes_0 = const()[name = tensor("op_16_axes_0"), val = tensor([-1])]; tensor var_16_keep_dims_0 = const()[name = tensor("op_16_keep_dims_0"), val = tensor(true)]; tensor var_16 = reduce_sum(axes = var_16_axes_0, keep_dims = var_16_keep_dims_0, x = var_11)[name = tensor("op_16")]; tensor var_17 = const()[name = tensor("op_17"), val = tensor(0x1.197998p-40)]; tensor const_0 = const()[name = tensor("const_0"), val = tensor(0x1.fffffep+127)]; tensor clip_0 = clip(alpha = var_17, beta = const_0, x = var_16)[name = tensor("clip_0")]; tensor norm_1 = sqrt(x = clip_0)[name = tensor("norm_1")]; tensor normalized1 = real_div(x = x_1, y = norm_1)[name = tensor("normalized1")]; tensor transpose_0 = const()[name = tensor("transpose_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(67904)))]; tensor var_22_bias_0 = const()[name = tensor("op_22_bias_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(199040)))]; tensor var_22 = linear(bias = var_22_bias_0, weight = transpose_0, x = normalized1)[name = tensor("op_22")]; tensor projected = mul(x = var_22, y = lda_scale)[name = tensor("projected")]; tensor x = sub(x = projected, y = mean2)[name = tensor("x")]; tensor var_26 = mul(x = x, y = x)[name = tensor("op_26")]; tensor var_31_axes_0 = const()[name = tensor("op_31_axes_0"), val = tensor([-1])]; tensor var_31_keep_dims_0 = const()[name = tensor("op_31_keep_dims_0"), val = tensor(true)]; tensor var_31 = reduce_sum(axes = var_31_axes_0, keep_dims = var_31_keep_dims_0, x = var_26)[name = tensor("op_31")]; tensor var_32 = const()[name = tensor("op_32"), val = tensor(0x1.197998p-40)]; tensor const_1 = const()[name = tensor("const_1"), val = tensor(0x1.fffffep+127)]; tensor clip_1 = clip(alpha = var_32, beta = const_1, x = var_31)[name = tensor("clip_1")]; tensor norm = sqrt(x = clip_1)[name = tensor("norm")]; tensor var_36 = real_div(x = x, y = norm)[name = tensor("op_36")]; tensor normalized2 = mul(x = var_36, y = lda_dim_scale)[name = tensor("normalized2")]; tensor plda_centered = sub(x = normalized2, y = mu)[name = tensor("plda_centered")]; tensor plda_features = linear(bias = var_22_bias_0, weight = plda_tr, x = plda_centered)[name = tensor("op_41")]; } -> (plda_features); }