| # -*- coding: utf-8 -*- | |
| """Azeri-Turkish-BERT-NER.ipynb | |
| Automatically generated by Colab. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1_vQDhrFp16kCtjJB5mENIT6jl5kkb03o | |
| """ | |
| !pip install transformers datasets seqeval huggingface_hub | |
| # Standard library imports | |
| import os # Provides functions for interacting with the operating system | |
| import warnings # Used to handle or suppress warnings | |
| import numpy as np # Essential for numerical operations and array manipulation | |
| import torch # PyTorch library for tensor computations and model handling | |
| import ast # Used for safe evaluation of strings to Python objects (e.g., parsing tokens) | |
| # Hugging Face and Transformers imports | |
| from datasets import load_dataset # Loads datasets for model training and evaluation | |
| from transformers import ( | |
| AutoTokenizer, # Initializes a tokenizer from a pre-trained model | |
| DataCollatorForTokenClassification, # Handles padding and formatting of token classification data | |
| TrainingArguments, # Defines training parameters like batch size and learning rate | |
| Trainer, # High-level API for managing training and evaluation | |
| AutoModelForTokenClassification, # Loads a pre-trained model for token classification tasks | |
| get_linear_schedule_with_warmup, # Learning rate scheduler for gradual warm-up and linear decay | |
| EarlyStoppingCallback # Callback to stop training if validation performance plateaus | |
| ) | |
| # Hugging Face Hub | |
| from huggingface_hub import login # Allows logging in to Hugging Face Hub to upload models | |
| # seqeval metrics for NER evaluation | |
| from seqeval.metrics import precision_score, recall_score, f1_score, classification_report | |
| # Provides precision, recall, F1-score, and classification report for evaluating NER model performance | |
| # Log in to Hugging Face Hub | |
| login(token="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") | |
| # Disable WandB (Weights & Biases) logging to avoid unwanted log outputs during training | |
| os.environ["WANDB_DISABLED"] = "true" | |
| # Suppress warning messages to keep output clean, especially during training and evaluation | |
| warnings.filterwarnings("ignore") | |
| # Load the Azerbaijani NER dataset from Hugging Face | |
| dataset = load_dataset("LocalDoc/azerbaijani-ner-dataset") | |
| print(dataset) # Display dataset structure (e.g., train/validation splits) | |
| # Preprocessing function to format tokens and NER tags correctly | |
| def preprocess_example(example): | |
| try: | |
| # Convert string of tokens to a list and parse NER tags to integers | |
| example["tokens"] = ast.literal_eval(example["tokens"]) | |
| example["ner_tags"] = list(map(int, ast.literal_eval(example["ner_tags"]))) | |
| except (ValueError, SyntaxError) as e: | |
| # Skip and log malformed examples, ensuring error resilience | |
| print(f"Skipping malformed example: {example['index']} due to error: {e}") | |
| example["tokens"] = [] | |
| example["ner_tags"] = [] | |
| return example | |
| # Apply preprocessing to each dataset entry, ensuring consistent formatting | |
| dataset = dataset.map(preprocess_example) | |
| # Initialize the tokenizer for multilingual NER using xlm-roberta-large | |
| # tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large") | |
| tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") | |
| # Function to tokenize input and align labels with tokenized words | |
| def tokenize_and_align_labels(example): | |
| # Tokenize the sentence while preserving word boundaries for correct NER tag alignment | |
| tokenized_inputs = tokenizer( | |
| example["tokens"], # List of words (tokens) in the sentence | |
| truncation=True, # Truncate sentences longer than max_length | |
| is_split_into_words=True, # Specify that input is a list of words | |
| padding="max_length", # Pad to maximum sequence length | |
| max_length=128, # Set the maximum sequence length to 128 tokens | |
| ) | |
| labels = [] # List to store aligned NER labels | |
| word_ids = tokenized_inputs.word_ids() # Get word IDs for each token | |
| previous_word_idx = None # Initialize previous word index for tracking | |
| # Loop through word indices to align NER tags with subword tokens | |
| for word_idx in word_ids: | |
| if word_idx is None: | |
| labels.append(-100) # Set padding token labels to -100 (ignored in loss) | |
| elif word_idx != previous_word_idx: | |
| # Assign the label from example's NER tags if word index matches | |
| labels.append(example["ner_tags"][word_idx] if word_idx < len(example["ner_tags"]) else -100) | |
| else: | |
| labels.append(-100) # Label subword tokens with -100 to avoid redundant labels | |
| previous_word_idx = word_idx # Update previous word index | |
| tokenized_inputs["labels"] = labels # Add labels to tokenized inputs | |
| return tokenized_inputs | |
| # Apply tokenization and label alignment function to the dataset | |
| tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=False) | |
| # Create a 90-10 split of the dataset for training and validation | |
| tokenized_datasets = tokenized_datasets["train"].train_test_split(test_size=0.1) | |
| print(tokenized_datasets) # Output structure of split datasets | |
| # Define a list of entity labels for NER tagging with B- (beginning) and I- (inside) markers | |
| label_list = [ | |
| "O", # Outside of a named entity | |
| "B-PERSON", "I-PERSON", # Person name (e.g., "John" in "John Doe") | |
| "B-LOCATION", "I-LOCATION", # Geographical location (e.g., "Paris") | |
| "B-ORGANISATION", "I-ORGANISATION", # Organization name (e.g., "UNICEF") | |
| "B-DATE", "I-DATE", # Date entity (e.g., "2024-11-05") | |
| "B-TIME", "I-TIME", # Time (e.g., "12:00 PM") | |
| "B-MONEY", "I-MONEY", # Monetary values (e.g., "$20") | |
| "B-PERCENTAGE", "I-PERCENTAGE", # Percentage values (e.g., "20%") | |
| "B-FACILITY", "I-FACILITY", # Physical facilities (e.g., "Airport") | |
| "B-PRODUCT", "I-PRODUCT", # Product names (e.g., "iPhone") | |
| "B-EVENT", "I-EVENT", # Named events (e.g., "Olympics") | |
| "B-ART", "I-ART", # Works of art (e.g., "Mona Lisa") | |
| "B-LAW", "I-LAW", # Laws and legal documents (e.g., "Article 50") | |
| "B-LANGUAGE", "I-LANGUAGE", # Languages (e.g., "Azerbaijani") | |
| "B-GPE", "I-GPE", # Geopolitical entities (e.g., "Europe") | |
| "B-NORP", "I-NORP", # Nationalities, religious groups, political groups | |
| "B-ORDINAL", "I-ORDINAL", # Ordinal indicators (e.g., "first", "second") | |
| "B-CARDINAL", "I-CARDINAL", # Cardinal numbers (e.g., "three") | |
| "B-DISEASE", "I-DISEASE", # Diseases (e.g., "COVID-19") | |
| "B-CONTACT", "I-CONTACT", # Contact info (e.g., email or phone number) | |
| "B-ADAGE", "I-ADAGE", # Common sayings or adages | |
| "B-QUANTITY", "I-QUANTITY", # Quantities (e.g., "5 km") | |
| "B-MISCELLANEOUS", "I-MISCELLANEOUS", # Miscellaneous entities not fitting other categories | |
| "B-POSITION", "I-POSITION", # Job titles or positions (e.g., "CEO") | |
| "B-PROJECT", "I-PROJECT" # Project names (e.g., "Project Apollo") | |
| ] | |
| # Initialize a data collator to handle padding and formatting for token classification | |
| data_collator = DataCollatorForTokenClassification(tokenizer) | |
| # Load a pre-trained model for token classification, adapted for NER tasks | |
| # model = AutoModelForTokenClassification.from_pretrained( | |
| # "xlm-roberta-large", # Base model (multilingual XLM-RoBERTa) for NER | |
| # num_labels=len(label_list) # Set the number of output labels to match NER categories | |
| # ) | |
| model = AutoModelForTokenClassification.from_pretrained( | |
| "akdeniz27/bert-base-turkish-cased-ner", | |
| num_labels=len(label_list), # Ensure this matches the number of labels for your NER task | |
| ignore_mismatched_sizes=True # Allow loading despite mismatched classifier layer size | |
| ) | |
| # Define a function to compute evaluation metrics for the model's predictions | |
| def compute_metrics(p): | |
| predictions, labels = p # Unpack predictions and true labels from the input | |
| # Convert logits to predicted label indices by taking the argmax along the last axis | |
| predictions = np.argmax(predictions, axis=2) | |
| # Filter out special padding labels (-100) and convert indices to label names | |
| true_labels = [[label_list[l] for l in label if l != -100] for label in labels] | |
| true_predictions = [ | |
| [label_list[p] for (p, l) in zip(prediction, label) if l != -100] | |
| for prediction, label in zip(predictions, labels) | |
| ] | |
| # Print a detailed classification report for each label category | |
| print(classification_report(true_labels, true_predictions)) | |
| # Calculate and return key evaluation metrics | |
| return { | |
| # Precision measures the accuracy of predicted positive instances | |
| # Important in NER to ensure entity predictions are correct and reduce false positives. | |
| "precision": precision_score(true_labels, true_predictions), | |
| # Recall measures the model's ability to capture all relevant entities | |
| # Essential in NER to ensure the model captures all entities, reducing false negatives. | |
| "recall": recall_score(true_labels, true_predictions), | |
| # F1-score is the harmonic mean of precision and recall, balancing both metrics | |
| # Useful in NER for providing an overall performance measure, especially when precision and recall are both important. | |
| "f1": f1_score(true_labels, true_predictions), | |
| } | |
| # Set up training arguments for model training, defining essential training configurations | |
| training_args = TrainingArguments( | |
| output_dir="./results", # Directory to save model checkpoints and final outputs | |
| evaluation_strategy="epoch", # Evaluate model on the validation set at the end of each epoch | |
| save_strategy="epoch", # Save model checkpoints at the end of each epoch | |
| learning_rate=2e-5, # Set a low learning rate to ensure stable training for fine-tuning | |
| per_device_train_batch_size=128, # Number of examples per batch during training, balancing speed and memory | |
| per_device_eval_batch_size=128, # Number of examples per batch during evaluation | |
| num_train_epochs=10, # Number of full training passes over the dataset | |
| weight_decay=0.005, # Regularization term to prevent overfitting by penalizing large weights | |
| fp16=True, # Use 16-bit floating point for faster and memory-efficient training | |
| logging_dir='./logs', # Directory to store training logs | |
| save_total_limit=2, # Keep only the 2 latest model checkpoints to save storage space | |
| load_best_model_at_end=True, # Load the best model based on metrics at the end of training | |
| metric_for_best_model="f1", # Use F1-score to determine the best model checkpoint | |
| report_to="none" # Disable reporting to external services (useful in local runs) | |
| ) | |
| # Initialize the Trainer class to manage the training loop with all necessary components | |
| trainer = Trainer( | |
| model=model, # The pre-trained model to be fine-tuned | |
| args=training_args, # Training configuration parameters defined in TrainingArguments | |
| train_dataset=tokenized_datasets["train"], # Tokenized training dataset | |
| eval_dataset=tokenized_datasets["test"], # Tokenized validation dataset | |
| tokenizer=tokenizer, # Tokenizer used for processing input text | |
| data_collator=data_collator, # Data collator for padding and batching during training | |
| compute_metrics=compute_metrics, # Function to calculate evaluation metrics like precision, recall, F1 | |
| callbacks=[EarlyStoppingCallback(early_stopping_patience=5)] # Stop training early if validation metrics don't improve for 2 epochs | |
| ) | |
| # Begin the training process and capture the training metrics | |
| training_metrics = trainer.train() | |
| # Evaluate the model on the validation set after training | |
| eval_results = trainer.evaluate() | |
| # Print evaluation results, including precision, recall, and F1-score | |
| print(eval_results) | |
| # Define the directory where the trained model and tokenizer will be saved | |
| save_directory = "./Azeri-Turkish-BERT-NER" | |
| # Save the trained model to the specified directory | |
| model.save_pretrained(save_directory) | |
| # Save the tokenizer to the same directory for compatibility with the model | |
| tokenizer.save_pretrained(save_directory) | |
| from transformers import pipeline | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained(save_directory) | |
| model = AutoModelForTokenClassification.from_pretrained(save_directory) | |
| # Initialize the NER pipeline | |
| device = 0 if torch.cuda.is_available() else -1 | |
| nlp_ner = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple", device=device) | |
| label_mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list) if label != "O"} | |
| def evaluate_model(test_texts, true_labels): | |
| predictions = [] | |
| for i, text in enumerate(test_texts): | |
| pred_entities = nlp_ner(text) | |
| pred_labels = [label_mapping.get(entity["entity_group"], "O") for entity in pred_entities if entity["entity_group"] in label_mapping] | |
| if len(pred_labels) != len(true_labels[i]): | |
| print(f"Warning: Inconsistent number of entities in sample {i+1}. Adjusting predicted entities.") | |
| pred_labels = pred_labels[:len(true_labels[i])] | |
| predictions.append(pred_labels) | |
| if all(len(true) == len(pred) for true, pred in zip(true_labels, predictions)): | |
| precision = precision_score(true_labels, predictions) | |
| recall = recall_score(true_labels, predictions) | |
| f1 = f1_score(true_labels, predictions) | |
| print("Precision:", precision) | |
| print("Recall:", recall) | |
| print("F1-Score:", f1) | |
| print(classification_report(true_labels, predictions)) | |
| else: | |
| print("Error: Could not align all samples correctly for evaluation.") | |
| test_texts = ["Shahla Khuduyeva və Pasha Sığorta şirkəti haqqında məlumat."] | |
| true_labels = [["B-PERSON", "B-ORGANISATION"]] | |
| evaluate_model(test_texts, true_labels) | |