Upload MPTS-52 checkpoints and training files
Browse files- EncDec-ODE-Gamma/checkpoint.ckpt +3 -0
- EncDec-ODE-Gamma/train.yaml +155 -0
- EncDec-SDE-Gamma/checkpoint.ckpt +3 -0
- EncDec-SDE-Gamma/train.yaml +155 -0
- Linear-ODE-Gamma/checkpoint.ckpt +3 -0
- Linear-ODE-Gamma/train.yaml +142 -0
- Linear-ODE/checkpoint.ckpt +3 -0
- Linear-ODE/train.yaml +134 -0
- Linear-SDE-Gamma/checkpoint.ckpt +3 -0
- Linear-SDE-Gamma/train.yaml +156 -0
- Trig-ODE-Gamma/checkpoint.ckpt +3 -0
- Trig-ODE-Gamma/train.yaml +149 -0
- Trig-ODE/checkpoint.ckpt +3 -0
- Trig-ODE/train.yaml +152 -0
- Trig-SDE-Gamma/checkpoint.ckpt +3 -0
- Trig-SDE-Gamma/train.yaml +146 -0
- VESBD-ODE/checkpoint.ckpt +3 -0
- VESBD-ODE/train.yaml +156 -0
- VPSBD-ODE/checkpoint.ckpt +3 -0
- VPSBD-ODE/train.yaml +139 -0
- VPSBD-SDE/checkpoint.ckpt +3 -0
- VPSBD-SDE/train.yaml +149 -0
EncDec-ODE-Gamma/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5fd2f9060e6de1382938db662f8d987aa38fa727cf9e96bd8f17571160290149
|
| 3 |
+
size 49644411
|
EncDec-ODE-Gamma/train.yaml
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant:
|
| 12 |
+
class_path: omg.si.interpolants.PeriodicEncoderDecoderInterpolant
|
| 13 |
+
init_args:
|
| 14 |
+
switch_time: 0.6487086666110259
|
| 15 |
+
power: 1.0
|
| 16 |
+
gamma:
|
| 17 |
+
class_path: omg.si.gamma.LatentGammaEncoderDecoder
|
| 18 |
+
init_args:
|
| 19 |
+
a: 1.9883383838119686
|
| 20 |
+
switch_time: 0.6487086666110259
|
| 21 |
+
power: 1.0
|
| 22 |
+
epsilon: null
|
| 23 |
+
differential_equation_type: "ODE"
|
| 24 |
+
integrator_kwargs:
|
| 25 |
+
method: "euler"
|
| 26 |
+
velocity_annealing_factor: 12.290317841755964
|
| 27 |
+
correct_center_of_mass_motion: true
|
| 28 |
+
# lattice vectors
|
| 29 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 30 |
+
init_args:
|
| 31 |
+
interpolant: omg.si.interpolants.TrigonometricInterpolant
|
| 32 |
+
gamma:
|
| 33 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 34 |
+
init_args:
|
| 35 |
+
a: 0.21935645939922985
|
| 36 |
+
epsilon:
|
| 37 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 38 |
+
init_args:
|
| 39 |
+
c: 9.431054439782873
|
| 40 |
+
mu: 0.21809909486896933
|
| 41 |
+
sigma: 0.03292165737293197
|
| 42 |
+
differential_equation_type: "SDE"
|
| 43 |
+
integrator_kwargs:
|
| 44 |
+
method: "euler"
|
| 45 |
+
dt: 0.001218559336848557
|
| 46 |
+
velocity_annealing_factor: 4.302804708170181
|
| 47 |
+
correct_center_of_mass_motion: false
|
| 48 |
+
data_fields:
|
| 49 |
+
# if the order of the data_fields changes,
|
| 50 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 51 |
+
- "species"
|
| 52 |
+
- "pos"
|
| 53 |
+
- "cell"
|
| 54 |
+
integration_time_steps: 820
|
| 55 |
+
relative_si_costs:
|
| 56 |
+
species_loss: 0.0
|
| 57 |
+
pos_loss_b: 0.689192251322191
|
| 58 |
+
cell_loss_b: 0.12351464867571432
|
| 59 |
+
cell_loss_z: 0.18729310000209468
|
| 60 |
+
sampler:
|
| 61 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 62 |
+
init_args:
|
| 63 |
+
pos_distribution: null
|
| 64 |
+
cell_distribution:
|
| 65 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 66 |
+
init_args:
|
| 67 |
+
dataset_name: mpts_52
|
| 68 |
+
species_distribution:
|
| 69 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 70 |
+
model:
|
| 71 |
+
class_path: omg.model.model.Model
|
| 72 |
+
init_args:
|
| 73 |
+
encoder:
|
| 74 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 75 |
+
head:
|
| 76 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 77 |
+
time_embedder:
|
| 78 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 79 |
+
init_args:
|
| 80 |
+
dim: 256
|
| 81 |
+
use_min_perm_dist: False
|
| 82 |
+
float_32_matmul_precision: "high"
|
| 83 |
+
validation_mode: "match_rate"
|
| 84 |
+
number_cpus: 7
|
| 85 |
+
dataset_name: "mpts_52"
|
| 86 |
+
data:
|
| 87 |
+
train_dataset:
|
| 88 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 89 |
+
init_args:
|
| 90 |
+
dataset:
|
| 91 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 92 |
+
init_args:
|
| 93 |
+
lmdb_paths:
|
| 94 |
+
- "data/mpts_52/train.lmdb"
|
| 95 |
+
niggli: False
|
| 96 |
+
val_dataset:
|
| 97 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 98 |
+
init_args:
|
| 99 |
+
dataset:
|
| 100 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 101 |
+
init_args:
|
| 102 |
+
lmdb_paths:
|
| 103 |
+
- "data/mpts_52/val.lmdb"
|
| 104 |
+
niggli: False
|
| 105 |
+
predict_dataset:
|
| 106 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 107 |
+
init_args:
|
| 108 |
+
dataset:
|
| 109 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 110 |
+
init_args:
|
| 111 |
+
lmdb_paths:
|
| 112 |
+
- "data/mpts_52/test.lmdb"
|
| 113 |
+
niggli: False
|
| 114 |
+
batch_size: 256
|
| 115 |
+
num_workers: 4
|
| 116 |
+
pin_memory: True
|
| 117 |
+
persistent_workers: True
|
| 118 |
+
trainer:
|
| 119 |
+
callbacks:
|
| 120 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 121 |
+
init_args:
|
| 122 |
+
filename: "best_val_loss_total"
|
| 123 |
+
save_top_k: 1
|
| 124 |
+
monitor: "val_loss_total"
|
| 125 |
+
save_weights_only: true
|
| 126 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 127 |
+
init_args:
|
| 128 |
+
filename: "best_val_match_rate"
|
| 129 |
+
save_top_k: 1
|
| 130 |
+
monitor: "match_rate"
|
| 131 |
+
save_weights_only: true
|
| 132 |
+
mode: 'max'
|
| 133 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 134 |
+
init_args:
|
| 135 |
+
filename: "best_val_rmsd"
|
| 136 |
+
save_top_k: 1
|
| 137 |
+
monitor: "mean_rmsd"
|
| 138 |
+
save_weights_only: true
|
| 139 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 140 |
+
init_args:
|
| 141 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 142 |
+
monitor: "val_loss_total"
|
| 143 |
+
every_n_epochs: 100
|
| 144 |
+
save_weights_only: false
|
| 145 |
+
gradient_clip_val: 0.5
|
| 146 |
+
num_sanity_val_steps: 0
|
| 147 |
+
precision: "32-true"
|
| 148 |
+
max_epochs: 2000
|
| 149 |
+
enable_progress_bar: true
|
| 150 |
+
limit_val_batches: 0.5
|
| 151 |
+
check_val_every_n_epoch: 100
|
| 152 |
+
optimizer:
|
| 153 |
+
class_path: torch.optim.Adam
|
| 154 |
+
init_args:
|
| 155 |
+
lr: 0.00047748599389170053
|
EncDec-SDE-Gamma/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecffeaba4cee77a76640b78e1954ee032f58e7e7b2662ed850dfa8ff5123b1fd
|
| 3 |
+
size 49644475
|
EncDec-SDE-Gamma/train.yaml
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant:
|
| 12 |
+
class_path: omg.si.interpolants.PeriodicEncoderDecoderInterpolant
|
| 13 |
+
init_args:
|
| 14 |
+
switch_time: 0.42184997325946555
|
| 15 |
+
power: 0.5
|
| 16 |
+
gamma:
|
| 17 |
+
class_path: omg.si.gamma.LatentGammaEncoderDecoder
|
| 18 |
+
init_args:
|
| 19 |
+
a: 0.03989185248799893
|
| 20 |
+
switch_time: 0.42184997325946555
|
| 21 |
+
power: 0.5
|
| 22 |
+
epsilon:
|
| 23 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 24 |
+
init_args:
|
| 25 |
+
c: 2.3996529332194574
|
| 26 |
+
mu: 0.25251095399328916
|
| 27 |
+
sigma: 0.03759134500470063
|
| 28 |
+
differential_equation_type: "SDE"
|
| 29 |
+
integrator_kwargs:
|
| 30 |
+
method: "euler"
|
| 31 |
+
dt: 0.0014076164225116372
|
| 32 |
+
velocity_annealing_factor: 3.7755089557808477
|
| 33 |
+
correct_center_of_mass_motion: true
|
| 34 |
+
# lattice vectors
|
| 35 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 36 |
+
init_args:
|
| 37 |
+
interpolant: omg.si.interpolants.LinearInterpolant
|
| 38 |
+
gamma:
|
| 39 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 40 |
+
init_args:
|
| 41 |
+
a: 4.961271013084809
|
| 42 |
+
epsilon: null
|
| 43 |
+
differential_equation_type: "ODE"
|
| 44 |
+
integrator_kwargs:
|
| 45 |
+
method: "euler"
|
| 46 |
+
velocity_annealing_factor: 1.1379701544400436
|
| 47 |
+
correct_center_of_mass_motion: false
|
| 48 |
+
data_fields:
|
| 49 |
+
# if the order of the data_fields changes,
|
| 50 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 51 |
+
- "species"
|
| 52 |
+
- "pos"
|
| 53 |
+
- "cell"
|
| 54 |
+
integration_time_steps: 710
|
| 55 |
+
relative_si_costs:
|
| 56 |
+
species_loss: 0.0
|
| 57 |
+
pos_loss_b: 0.6143090042317803
|
| 58 |
+
pos_loss_z: 0.3794040725288834
|
| 59 |
+
cell_loss_b: 0.00628692323933625
|
| 60 |
+
sampler:
|
| 61 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 62 |
+
init_args:
|
| 63 |
+
pos_distribution: null
|
| 64 |
+
cell_distribution:
|
| 65 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 66 |
+
init_args:
|
| 67 |
+
dataset_name: mpts_52
|
| 68 |
+
species_distribution:
|
| 69 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 70 |
+
model:
|
| 71 |
+
class_path: omg.model.model.Model
|
| 72 |
+
init_args:
|
| 73 |
+
encoder:
|
| 74 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 75 |
+
head:
|
| 76 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 77 |
+
time_embedder:
|
| 78 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 79 |
+
init_args:
|
| 80 |
+
dim: 256
|
| 81 |
+
use_min_perm_dist: False
|
| 82 |
+
float_32_matmul_precision: "high"
|
| 83 |
+
validation_mode: "match_rate"
|
| 84 |
+
number_cpus: 7
|
| 85 |
+
dataset_name: "mpts_52"
|
| 86 |
+
data:
|
| 87 |
+
train_dataset:
|
| 88 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 89 |
+
init_args:
|
| 90 |
+
dataset:
|
| 91 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 92 |
+
init_args:
|
| 93 |
+
lmdb_paths:
|
| 94 |
+
- "data/mpts_52/train.lmdb"
|
| 95 |
+
niggli: False
|
| 96 |
+
val_dataset:
|
| 97 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 98 |
+
init_args:
|
| 99 |
+
dataset:
|
| 100 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 101 |
+
init_args:
|
| 102 |
+
lmdb_paths:
|
| 103 |
+
- "data/mpts_52/val.lmdb"
|
| 104 |
+
niggli: False
|
| 105 |
+
predict_dataset:
|
| 106 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 107 |
+
init_args:
|
| 108 |
+
dataset:
|
| 109 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 110 |
+
init_args:
|
| 111 |
+
lmdb_paths:
|
| 112 |
+
- "data/mpts_52/test.lmdb"
|
| 113 |
+
niggli: False
|
| 114 |
+
batch_size: 32
|
| 115 |
+
num_workers: 4
|
| 116 |
+
pin_memory: True
|
| 117 |
+
persistent_workers: True
|
| 118 |
+
trainer:
|
| 119 |
+
callbacks:
|
| 120 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 121 |
+
init_args:
|
| 122 |
+
filename: "best_val_loss_total"
|
| 123 |
+
save_top_k: 1
|
| 124 |
+
monitor: "val_loss_total"
|
| 125 |
+
save_weights_only: true
|
| 126 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 127 |
+
init_args:
|
| 128 |
+
filename: "best_val_match_rate"
|
| 129 |
+
save_top_k: 1
|
| 130 |
+
monitor: "match_rate"
|
| 131 |
+
save_weights_only: true
|
| 132 |
+
mode: 'max'
|
| 133 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 134 |
+
init_args:
|
| 135 |
+
filename: "best_val_rmsd"
|
| 136 |
+
save_top_k: 1
|
| 137 |
+
monitor: "mean_rmsd"
|
| 138 |
+
save_weights_only: true
|
| 139 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 140 |
+
init_args:
|
| 141 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 142 |
+
monitor: "val_loss_total"
|
| 143 |
+
every_n_epochs: 100
|
| 144 |
+
save_weights_only: false
|
| 145 |
+
gradient_clip_val: 0.5
|
| 146 |
+
num_sanity_val_steps: 0
|
| 147 |
+
precision: "32-true"
|
| 148 |
+
max_epochs: 2000
|
| 149 |
+
enable_progress_bar: true
|
| 150 |
+
limit_val_batches: 0.5
|
| 151 |
+
check_val_every_n_epoch: 100
|
| 152 |
+
optimizer:
|
| 153 |
+
class_path: torch.optim.Adam
|
| 154 |
+
init_args:
|
| 155 |
+
lr: 0.00018567271191860665
|
Linear-ODE-Gamma/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a2de33650021f1e54c181668bfb34de6b845c4b5ce6422abb4f44e85f31ebb5
|
| 3 |
+
size 49644411
|
Linear-ODE-Gamma/train.yaml
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant: omg.si.interpolants.PeriodicLinearInterpolant
|
| 12 |
+
gamma:
|
| 13 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 14 |
+
init_args:
|
| 15 |
+
a: 0.2575112227566439
|
| 16 |
+
epsilon: null
|
| 17 |
+
differential_equation_type: "ODE"
|
| 18 |
+
integrator_kwargs:
|
| 19 |
+
method: "euler"
|
| 20 |
+
velocity_annealing_factor: 7.7611189744870925
|
| 21 |
+
correct_center_of_mass_motion: true
|
| 22 |
+
# lattice vectors
|
| 23 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 24 |
+
init_args:
|
| 25 |
+
interpolant: omg.si.interpolants.TrigonometricInterpolant
|
| 26 |
+
gamma:
|
| 27 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 28 |
+
init_args:
|
| 29 |
+
a: 2.9759856920732597
|
| 30 |
+
epsilon: null
|
| 31 |
+
differential_equation_type: "ODE"
|
| 32 |
+
integrator_kwargs:
|
| 33 |
+
method: "euler"
|
| 34 |
+
velocity_annealing_factor: 4.116061496782678
|
| 35 |
+
correct_center_of_mass_motion: false
|
| 36 |
+
data_fields:
|
| 37 |
+
# if the order of the data_fields changes,
|
| 38 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 39 |
+
- "species"
|
| 40 |
+
- "pos"
|
| 41 |
+
- "cell"
|
| 42 |
+
integration_time_steps: 690
|
| 43 |
+
relative_si_costs:
|
| 44 |
+
species_loss: 0.0
|
| 45 |
+
pos_loss_b: 0.9976417941296929
|
| 46 |
+
cell_loss_b: 0.002358205870307133
|
| 47 |
+
sampler:
|
| 48 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 49 |
+
init_args:
|
| 50 |
+
pos_distribution: null
|
| 51 |
+
cell_distribution:
|
| 52 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 53 |
+
init_args:
|
| 54 |
+
dataset_name: mpts_52
|
| 55 |
+
species_distribution:
|
| 56 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 57 |
+
model:
|
| 58 |
+
class_path: omg.model.model.Model
|
| 59 |
+
init_args:
|
| 60 |
+
encoder:
|
| 61 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 62 |
+
head:
|
| 63 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 64 |
+
time_embedder:
|
| 65 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 66 |
+
init_args:
|
| 67 |
+
dim: 256
|
| 68 |
+
use_min_perm_dist: False
|
| 69 |
+
float_32_matmul_precision: "high"
|
| 70 |
+
validation_mode: "match_rate"
|
| 71 |
+
number_cpus: 7
|
| 72 |
+
dataset_name: "mpts_52"
|
| 73 |
+
data:
|
| 74 |
+
train_dataset:
|
| 75 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 76 |
+
init_args:
|
| 77 |
+
dataset:
|
| 78 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 79 |
+
init_args:
|
| 80 |
+
lmdb_paths:
|
| 81 |
+
- "data/mpts_52/train.lmdb"
|
| 82 |
+
niggli: False
|
| 83 |
+
val_dataset:
|
| 84 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 85 |
+
init_args:
|
| 86 |
+
dataset:
|
| 87 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 88 |
+
init_args:
|
| 89 |
+
lmdb_paths:
|
| 90 |
+
- "data/mpts_52/val.lmdb"
|
| 91 |
+
niggli: False
|
| 92 |
+
predict_dataset:
|
| 93 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 94 |
+
init_args:
|
| 95 |
+
dataset:
|
| 96 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 97 |
+
init_args:
|
| 98 |
+
lmdb_paths:
|
| 99 |
+
- "data/mpts_52/test.lmdb"
|
| 100 |
+
niggli: False
|
| 101 |
+
batch_size: 128
|
| 102 |
+
num_workers: 4
|
| 103 |
+
pin_memory: True
|
| 104 |
+
persistent_workers: True
|
| 105 |
+
trainer:
|
| 106 |
+
callbacks:
|
| 107 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 108 |
+
init_args:
|
| 109 |
+
filename: "best_val_loss_total"
|
| 110 |
+
save_top_k: 1
|
| 111 |
+
monitor: "val_loss_total"
|
| 112 |
+
save_weights_only: true
|
| 113 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 114 |
+
init_args:
|
| 115 |
+
filename: "best_val_match_rate"
|
| 116 |
+
save_top_k: 1
|
| 117 |
+
monitor: "match_rate"
|
| 118 |
+
save_weights_only: true
|
| 119 |
+
mode: 'max'
|
| 120 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 121 |
+
init_args:
|
| 122 |
+
filename: "best_val_rmsd"
|
| 123 |
+
save_top_k: 1
|
| 124 |
+
monitor: "mean_rmsd"
|
| 125 |
+
save_weights_only: true
|
| 126 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 127 |
+
init_args:
|
| 128 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 129 |
+
monitor: "val_loss_total"
|
| 130 |
+
every_n_epochs: 100
|
| 131 |
+
save_weights_only: false
|
| 132 |
+
gradient_clip_val: 0.5
|
| 133 |
+
num_sanity_val_steps: 0
|
| 134 |
+
precision: "32-true"
|
| 135 |
+
max_epochs: 2000
|
| 136 |
+
enable_progress_bar: true
|
| 137 |
+
limit_val_batches: 0.5
|
| 138 |
+
check_val_every_n_epoch: 100
|
| 139 |
+
optimizer:
|
| 140 |
+
class_path: torch.optim.Adam
|
| 141 |
+
init_args:
|
| 142 |
+
lr: 4.006249666984122e-05
|
Linear-ODE/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c189017e4d30b78995435af4e8dc42ca8942f64633d662762928680c536e211
|
| 3 |
+
size 49644411
|
Linear-ODE/train.yaml
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant: omg.si.interpolants.PeriodicLinearInterpolant
|
| 12 |
+
gamma: null
|
| 13 |
+
epsilon: null
|
| 14 |
+
differential_equation_type: "ODE"
|
| 15 |
+
integrator_kwargs:
|
| 16 |
+
method: "euler"
|
| 17 |
+
velocity_annealing_factor: 12.752963137656907
|
| 18 |
+
correct_center_of_mass_motion: true
|
| 19 |
+
# lattice vectors
|
| 20 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 21 |
+
init_args:
|
| 22 |
+
interpolant: omg.si.interpolants.LinearInterpolant
|
| 23 |
+
gamma: null
|
| 24 |
+
epsilon: null
|
| 25 |
+
differential_equation_type: "ODE"
|
| 26 |
+
integrator_kwargs:
|
| 27 |
+
method: "euler"
|
| 28 |
+
velocity_annealing_factor: 0.9964121490291458
|
| 29 |
+
correct_center_of_mass_motion: false
|
| 30 |
+
data_fields:
|
| 31 |
+
# if the order of the data_fields changes,
|
| 32 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 33 |
+
- "species"
|
| 34 |
+
- "pos"
|
| 35 |
+
- "cell"
|
| 36 |
+
integration_time_steps: 100
|
| 37 |
+
relative_si_costs:
|
| 38 |
+
species_loss: 0.0
|
| 39 |
+
pos_loss_b: 0.9983149306572928
|
| 40 |
+
cell_loss_b: 0.0016850693427072152
|
| 41 |
+
sampler:
|
| 42 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 43 |
+
init_args:
|
| 44 |
+
pos_distribution: null
|
| 45 |
+
cell_distribution:
|
| 46 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 47 |
+
init_args:
|
| 48 |
+
dataset_name: mpts_52
|
| 49 |
+
species_distribution:
|
| 50 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 51 |
+
model:
|
| 52 |
+
class_path: omg.model.model.Model
|
| 53 |
+
init_args:
|
| 54 |
+
encoder:
|
| 55 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 56 |
+
head:
|
| 57 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 58 |
+
time_embedder:
|
| 59 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 60 |
+
init_args:
|
| 61 |
+
dim: 256
|
| 62 |
+
use_min_perm_dist: False
|
| 63 |
+
float_32_matmul_precision: "high"
|
| 64 |
+
validation_mode: "match_rate"
|
| 65 |
+
dataset_name: "mpts_52"
|
| 66 |
+
data:
|
| 67 |
+
train_dataset:
|
| 68 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 69 |
+
init_args:
|
| 70 |
+
dataset:
|
| 71 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 72 |
+
init_args:
|
| 73 |
+
lmdb_paths:
|
| 74 |
+
- "data/mpts_52/train.lmdb"
|
| 75 |
+
niggli: False
|
| 76 |
+
val_dataset:
|
| 77 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 78 |
+
init_args:
|
| 79 |
+
dataset:
|
| 80 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 81 |
+
init_args:
|
| 82 |
+
lmdb_paths:
|
| 83 |
+
- "data/mpts_52/val.lmdb"
|
| 84 |
+
niggli: False
|
| 85 |
+
predict_dataset:
|
| 86 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 87 |
+
init_args:
|
| 88 |
+
dataset:
|
| 89 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 90 |
+
init_args:
|
| 91 |
+
lmdb_paths:
|
| 92 |
+
- "data/mpts_52/test.lmdb"
|
| 93 |
+
niggli: False
|
| 94 |
+
batch_size: 512
|
| 95 |
+
num_workers: 4
|
| 96 |
+
pin_memory: True
|
| 97 |
+
persistent_workers: True
|
| 98 |
+
trainer:
|
| 99 |
+
callbacks:
|
| 100 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 101 |
+
init_args:
|
| 102 |
+
filename: "best_val_loss_total"
|
| 103 |
+
save_top_k: 1
|
| 104 |
+
monitor: "val_loss_total"
|
| 105 |
+
save_weights_only: true
|
| 106 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 107 |
+
init_args:
|
| 108 |
+
filename: "best_val_match_rate"
|
| 109 |
+
save_top_k: 1
|
| 110 |
+
monitor: "match_rate"
|
| 111 |
+
save_weights_only: true
|
| 112 |
+
mode: 'max'
|
| 113 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 114 |
+
init_args:
|
| 115 |
+
filename: "best_val_rmsd"
|
| 116 |
+
save_top_k: 1
|
| 117 |
+
monitor: "mean_rmsd"
|
| 118 |
+
save_weights_only: true
|
| 119 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 120 |
+
init_args:
|
| 121 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 122 |
+
monitor: "val_loss_total"
|
| 123 |
+
every_n_epochs: 100
|
| 124 |
+
save_weights_only: false
|
| 125 |
+
gradient_clip_val: 0.5
|
| 126 |
+
num_sanity_val_steps: 0
|
| 127 |
+
precision: "32-true"
|
| 128 |
+
max_epochs: 10000
|
| 129 |
+
enable_progress_bar: false
|
| 130 |
+
check_val_every_n_epoch: 100
|
| 131 |
+
optimizer:
|
| 132 |
+
class_path: torch.optim.Adam
|
| 133 |
+
init_args:
|
| 134 |
+
lr: 0.0005546288717347031
|
Linear-SDE-Gamma/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a44fb11e6327471ca725a66137dee984529a626330cd137b51d6882ea39996f4
|
| 3 |
+
size 148120276
|
Linear-SDE-Gamma/train.yaml
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant: omg.si.interpolants.PeriodicLinearInterpolant
|
| 12 |
+
gamma:
|
| 13 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 14 |
+
init_args:
|
| 15 |
+
a: 0.06285652866840548
|
| 16 |
+
epsilon:
|
| 17 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 18 |
+
init_args:
|
| 19 |
+
c: 6.097168392667226
|
| 20 |
+
mu: 0.21833859329765842
|
| 21 |
+
sigma: 0.04985718977712428
|
| 22 |
+
differential_equation_type: "SDE"
|
| 23 |
+
integrator_kwargs:
|
| 24 |
+
method: "euler"
|
| 25 |
+
dt: 0.0032297736033797264
|
| 26 |
+
velocity_annealing_factor: 11.58289329358004
|
| 27 |
+
correct_center_of_mass_motion: true
|
| 28 |
+
# lattice vectors
|
| 29 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 30 |
+
init_args:
|
| 31 |
+
interpolant: omg.si.interpolants.LinearInterpolant
|
| 32 |
+
gamma:
|
| 33 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 34 |
+
init_args:
|
| 35 |
+
a: 0.1317493001266121
|
| 36 |
+
epsilon:
|
| 37 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 38 |
+
init_args:
|
| 39 |
+
c: 9.612495617660462
|
| 40 |
+
mu: 0.08389382419092543
|
| 41 |
+
sigma: 0.033192886798663945
|
| 42 |
+
differential_equation_type: "SDE"
|
| 43 |
+
integrator_kwargs:
|
| 44 |
+
method: "euler"
|
| 45 |
+
dt: 0.0032297736033797264
|
| 46 |
+
velocity_annealing_factor: 5.081210983525862
|
| 47 |
+
correct_center_of_mass_motion: false
|
| 48 |
+
data_fields:
|
| 49 |
+
# if the order of the data_fields changes,
|
| 50 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 51 |
+
- "species"
|
| 52 |
+
- "pos"
|
| 53 |
+
- "cell"
|
| 54 |
+
integration_time_steps: 310
|
| 55 |
+
relative_si_costs:
|
| 56 |
+
species_loss: 0.0
|
| 57 |
+
pos_loss_b: 0.007345481151868809
|
| 58 |
+
pos_loss_z: 0.9153543617007412
|
| 59 |
+
cell_loss_b: 0.06421063793348068
|
| 60 |
+
cell_loss_z: 0.013089519213909303
|
| 61 |
+
sampler:
|
| 62 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 63 |
+
init_args:
|
| 64 |
+
pos_distribution: null
|
| 65 |
+
cell_distribution:
|
| 66 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 67 |
+
init_args:
|
| 68 |
+
dataset_name: mpts_52
|
| 69 |
+
species_distribution:
|
| 70 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 71 |
+
model:
|
| 72 |
+
class_path: omg.model.model.Model
|
| 73 |
+
init_args:
|
| 74 |
+
encoder:
|
| 75 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 76 |
+
head:
|
| 77 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 78 |
+
time_embedder:
|
| 79 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 80 |
+
init_args:
|
| 81 |
+
dim: 256
|
| 82 |
+
use_min_perm_dist: False
|
| 83 |
+
float_32_matmul_precision: "high"
|
| 84 |
+
validation_mode: "match_rate"
|
| 85 |
+
number_cpus: 7
|
| 86 |
+
dataset_name: "mpts_52"
|
| 87 |
+
data:
|
| 88 |
+
train_dataset:
|
| 89 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 90 |
+
init_args:
|
| 91 |
+
dataset:
|
| 92 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 93 |
+
init_args:
|
| 94 |
+
lmdb_paths:
|
| 95 |
+
- "data/mpts_52/train.lmdb"
|
| 96 |
+
niggli: False
|
| 97 |
+
val_dataset:
|
| 98 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 99 |
+
init_args:
|
| 100 |
+
dataset:
|
| 101 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 102 |
+
init_args:
|
| 103 |
+
lmdb_paths:
|
| 104 |
+
- "data/mpts_52/val.lmdb"
|
| 105 |
+
niggli: False
|
| 106 |
+
predict_dataset:
|
| 107 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 108 |
+
init_args:
|
| 109 |
+
dataset:
|
| 110 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 111 |
+
init_args:
|
| 112 |
+
lmdb_paths:
|
| 113 |
+
- "data/mpts_52/test.lmdb"
|
| 114 |
+
niggli: False
|
| 115 |
+
batch_size: 256
|
| 116 |
+
num_workers: 4
|
| 117 |
+
pin_memory: True
|
| 118 |
+
persistent_workers: True
|
| 119 |
+
trainer:
|
| 120 |
+
callbacks:
|
| 121 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 122 |
+
init_args:
|
| 123 |
+
filename: "best_val_loss_total"
|
| 124 |
+
save_top_k: 1
|
| 125 |
+
monitor: "val_loss_total"
|
| 126 |
+
save_weights_only: true
|
| 127 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 128 |
+
init_args:
|
| 129 |
+
filename: "best_val_match_rate"
|
| 130 |
+
save_top_k: 1
|
| 131 |
+
monitor: "match_rate"
|
| 132 |
+
save_weights_only: true
|
| 133 |
+
mode: 'max'
|
| 134 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 135 |
+
init_args:
|
| 136 |
+
filename: "best_val_rmsd"
|
| 137 |
+
save_top_k: 1
|
| 138 |
+
monitor: "mean_rmsd"
|
| 139 |
+
save_weights_only: true
|
| 140 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 141 |
+
init_args:
|
| 142 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 143 |
+
monitor: "val_loss_total"
|
| 144 |
+
every_n_epochs: 100
|
| 145 |
+
save_weights_only: false
|
| 146 |
+
gradient_clip_val: 0.5
|
| 147 |
+
num_sanity_val_steps: 0
|
| 148 |
+
precision: "32-true"
|
| 149 |
+
max_epochs: 2000
|
| 150 |
+
enable_progress_bar: true
|
| 151 |
+
limit_val_batches: 0.5
|
| 152 |
+
check_val_every_n_epoch: 100
|
| 153 |
+
optimizer:
|
| 154 |
+
class_path: torch.optim.Adam
|
| 155 |
+
init_args:
|
| 156 |
+
lr: 0.0002629870131361822
|
Trig-ODE-Gamma/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2300d4bfa2684ba81cdaac6277e4fb2205bb8b8c380022e1346169ffd9eda1fa
|
| 3 |
+
size 148107354
|
Trig-ODE-Gamma/train.yaml
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant: omg.si.interpolants.PeriodicTrigonometricInterpolant
|
| 12 |
+
gamma:
|
| 13 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 14 |
+
init_args:
|
| 15 |
+
a: 0.03337798944475465
|
| 16 |
+
epsilon: null
|
| 17 |
+
differential_equation_type: "ODE"
|
| 18 |
+
integrator_kwargs:
|
| 19 |
+
method: "euler"
|
| 20 |
+
velocity_annealing_factor: 13.545929738762764
|
| 21 |
+
correct_center_of_mass_motion: true
|
| 22 |
+
# lattice vectors
|
| 23 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 24 |
+
init_args:
|
| 25 |
+
interpolant: omg.si.interpolants.LinearInterpolant
|
| 26 |
+
gamma:
|
| 27 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 28 |
+
init_args:
|
| 29 |
+
a: 0.017261010545698854
|
| 30 |
+
epsilon:
|
| 31 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 32 |
+
init_args:
|
| 33 |
+
c: 0.8758328635983847
|
| 34 |
+
mu: 0.29744423858325936
|
| 35 |
+
sigma: 0.0052236060273636595
|
| 36 |
+
differential_equation_type: "SDE"
|
| 37 |
+
integrator_kwargs:
|
| 38 |
+
method: "euler"
|
| 39 |
+
dt: 0.0012811297783628106
|
| 40 |
+
velocity_annealing_factor: 2.380421528846764
|
| 41 |
+
correct_center_of_mass_motion: false
|
| 42 |
+
data_fields:
|
| 43 |
+
# if the order of the data_fields changes,
|
| 44 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 45 |
+
- "species"
|
| 46 |
+
- "pos"
|
| 47 |
+
- "cell"
|
| 48 |
+
integration_time_steps: 780
|
| 49 |
+
relative_si_costs:
|
| 50 |
+
species_loss: 0.0
|
| 51 |
+
pos_loss_b: 0.983015308902659
|
| 52 |
+
cell_loss_b: 0.01673796318800159
|
| 53 |
+
cell_loss_z: 0.0002467279093394523
|
| 54 |
+
sampler:
|
| 55 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 56 |
+
init_args:
|
| 57 |
+
pos_distribution: null
|
| 58 |
+
cell_distribution:
|
| 59 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 60 |
+
init_args:
|
| 61 |
+
dataset_name: mpts_52
|
| 62 |
+
species_distribution:
|
| 63 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 64 |
+
model:
|
| 65 |
+
class_path: omg.model.model.Model
|
| 66 |
+
init_args:
|
| 67 |
+
encoder:
|
| 68 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 69 |
+
head:
|
| 70 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 71 |
+
time_embedder:
|
| 72 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 73 |
+
init_args:
|
| 74 |
+
dim: 256
|
| 75 |
+
use_min_perm_dist: False
|
| 76 |
+
float_32_matmul_precision: "high"
|
| 77 |
+
validation_mode: "match_rate"
|
| 78 |
+
number_cpus: 7
|
| 79 |
+
dataset_name: "mpts_52"
|
| 80 |
+
data:
|
| 81 |
+
train_dataset:
|
| 82 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 83 |
+
init_args:
|
| 84 |
+
dataset:
|
| 85 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 86 |
+
init_args:
|
| 87 |
+
lmdb_paths:
|
| 88 |
+
- "data/mpts_52/train.lmdb"
|
| 89 |
+
niggli: False
|
| 90 |
+
val_dataset:
|
| 91 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 92 |
+
init_args:
|
| 93 |
+
dataset:
|
| 94 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 95 |
+
init_args:
|
| 96 |
+
lmdb_paths:
|
| 97 |
+
- "data/mpts_52/val.lmdb"
|
| 98 |
+
niggli: False
|
| 99 |
+
predict_dataset:
|
| 100 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 101 |
+
init_args:
|
| 102 |
+
dataset:
|
| 103 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 104 |
+
init_args:
|
| 105 |
+
lmdb_paths:
|
| 106 |
+
- "data/mpts_52/test.lmdb"
|
| 107 |
+
niggli: False
|
| 108 |
+
batch_size: 32
|
| 109 |
+
num_workers: 4
|
| 110 |
+
pin_memory: True
|
| 111 |
+
persistent_workers: True
|
| 112 |
+
trainer:
|
| 113 |
+
callbacks:
|
| 114 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 115 |
+
init_args:
|
| 116 |
+
filename: "best_val_loss_total"
|
| 117 |
+
save_top_k: 1
|
| 118 |
+
monitor: "val_loss_total"
|
| 119 |
+
save_weights_only: true
|
| 120 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 121 |
+
init_args:
|
| 122 |
+
filename: "best_val_match_rate"
|
| 123 |
+
save_top_k: 1
|
| 124 |
+
monitor: "match_rate"
|
| 125 |
+
save_weights_only: true
|
| 126 |
+
mode: 'max'
|
| 127 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 128 |
+
init_args:
|
| 129 |
+
filename: "best_val_rmsd"
|
| 130 |
+
save_top_k: 1
|
| 131 |
+
monitor: "mean_rmsd"
|
| 132 |
+
save_weights_only: true
|
| 133 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 134 |
+
init_args:
|
| 135 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 136 |
+
monitor: "val_loss_total"
|
| 137 |
+
every_n_epochs: 100
|
| 138 |
+
save_weights_only: false
|
| 139 |
+
gradient_clip_val: 0.5
|
| 140 |
+
num_sanity_val_steps: 0
|
| 141 |
+
precision: "32-true"
|
| 142 |
+
max_epochs: 2000
|
| 143 |
+
enable_progress_bar: true
|
| 144 |
+
limit_val_batches: 0.5
|
| 145 |
+
check_val_every_n_epoch: 100
|
| 146 |
+
optimizer:
|
| 147 |
+
class_path: torch.optim.Adam
|
| 148 |
+
init_args:
|
| 149 |
+
lr: 8.341737878937152e-05
|
Trig-ODE/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4def0d650b785ca9fe3b818229d140d1885d1ff06bc64e75c15fbb0fb553f2e8
|
| 3 |
+
size 148107226
|
Trig-ODE/train.yaml
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant: omg.si.interpolants.PeriodicTrigonometricInterpolant
|
| 12 |
+
gamma: null
|
| 13 |
+
epsilon: null
|
| 14 |
+
differential_equation_type: "ODE"
|
| 15 |
+
integrator_kwargs:
|
| 16 |
+
method: "euler"
|
| 17 |
+
velocity_annealing_factor: 12.34532470785473
|
| 18 |
+
correct_center_of_mass_motion: true
|
| 19 |
+
# lattice vectors
|
| 20 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 21 |
+
init_args:
|
| 22 |
+
interpolant:
|
| 23 |
+
class_path: omg.si.interpolants.EncoderDecoderInterpolant
|
| 24 |
+
init_args:
|
| 25 |
+
switch_time: 0.4080329374611481
|
| 26 |
+
power: 0.5
|
| 27 |
+
gamma:
|
| 28 |
+
class_path: omg.si.gamma.LatentGammaEncoderDecoder
|
| 29 |
+
init_args:
|
| 30 |
+
a: 5.270616141661882
|
| 31 |
+
switch_time: 0.4080329374611481
|
| 32 |
+
power: 0.5
|
| 33 |
+
epsilon:
|
| 34 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 35 |
+
init_args:
|
| 36 |
+
c: 4.354817546796119
|
| 37 |
+
mu: 0.2923928859901851
|
| 38 |
+
sigma: 0.04742031136770322
|
| 39 |
+
differential_equation_type: "SDE"
|
| 40 |
+
integrator_kwargs:
|
| 41 |
+
method: "euler"
|
| 42 |
+
dt: 0.005905325524508953
|
| 43 |
+
velocity_annealing_factor: 3.6141717997883447
|
| 44 |
+
correct_center_of_mass_motion: false
|
| 45 |
+
data_fields:
|
| 46 |
+
# if the order of the data_fields changes,
|
| 47 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 48 |
+
- "species"
|
| 49 |
+
- "pos"
|
| 50 |
+
- "cell"
|
| 51 |
+
integration_time_steps: 170
|
| 52 |
+
relative_si_costs:
|
| 53 |
+
species_loss: 0.0
|
| 54 |
+
pos_loss_b: 0.9967455480681945
|
| 55 |
+
cell_loss_b: 0.002271914623580616
|
| 56 |
+
cell_loss_z: 0.0009825373082248405
|
| 57 |
+
sampler:
|
| 58 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 59 |
+
init_args:
|
| 60 |
+
pos_distribution: null
|
| 61 |
+
cell_distribution:
|
| 62 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 63 |
+
init_args:
|
| 64 |
+
dataset_name: mpts_52
|
| 65 |
+
species_distribution:
|
| 66 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 67 |
+
model:
|
| 68 |
+
class_path: omg.model.model.Model
|
| 69 |
+
init_args:
|
| 70 |
+
encoder:
|
| 71 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 72 |
+
head:
|
| 73 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 74 |
+
time_embedder:
|
| 75 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 76 |
+
init_args:
|
| 77 |
+
dim: 256
|
| 78 |
+
use_min_perm_dist: False
|
| 79 |
+
float_32_matmul_precision: "high"
|
| 80 |
+
validation_mode: "match_rate"
|
| 81 |
+
number_cpus: 7
|
| 82 |
+
dataset_name: "mpts_52"
|
| 83 |
+
data:
|
| 84 |
+
train_dataset:
|
| 85 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 86 |
+
init_args:
|
| 87 |
+
dataset:
|
| 88 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 89 |
+
init_args:
|
| 90 |
+
lmdb_paths:
|
| 91 |
+
- "data/mpts_52/train.lmdb"
|
| 92 |
+
niggli: False
|
| 93 |
+
val_dataset:
|
| 94 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 95 |
+
init_args:
|
| 96 |
+
dataset:
|
| 97 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 98 |
+
init_args:
|
| 99 |
+
lmdb_paths:
|
| 100 |
+
- "data/mpts_52/val.lmdb"
|
| 101 |
+
niggli: False
|
| 102 |
+
predict_dataset:
|
| 103 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 104 |
+
init_args:
|
| 105 |
+
dataset:
|
| 106 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 107 |
+
init_args:
|
| 108 |
+
lmdb_paths:
|
| 109 |
+
- "data/mpts_52/test.lmdb"
|
| 110 |
+
niggli: False
|
| 111 |
+
batch_size: 32
|
| 112 |
+
num_workers: 4
|
| 113 |
+
pin_memory: True
|
| 114 |
+
persistent_workers: True
|
| 115 |
+
trainer:
|
| 116 |
+
callbacks:
|
| 117 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 118 |
+
init_args:
|
| 119 |
+
filename: "best_val_loss_total"
|
| 120 |
+
save_top_k: 1
|
| 121 |
+
monitor: "val_loss_total"
|
| 122 |
+
save_weights_only: true
|
| 123 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 124 |
+
init_args:
|
| 125 |
+
filename: "best_val_match_rate"
|
| 126 |
+
save_top_k: 1
|
| 127 |
+
monitor: "match_rate"
|
| 128 |
+
save_weights_only: true
|
| 129 |
+
mode: 'max'
|
| 130 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 131 |
+
init_args:
|
| 132 |
+
filename: "best_val_rmsd"
|
| 133 |
+
save_top_k: 1
|
| 134 |
+
monitor: "mean_rmsd"
|
| 135 |
+
save_weights_only: true
|
| 136 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 137 |
+
init_args:
|
| 138 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 139 |
+
monitor: "val_loss_total"
|
| 140 |
+
every_n_epochs: 100
|
| 141 |
+
save_weights_only: false
|
| 142 |
+
gradient_clip_val: 0.5
|
| 143 |
+
num_sanity_val_steps: 0
|
| 144 |
+
precision: "32-true"
|
| 145 |
+
max_epochs: 2000
|
| 146 |
+
enable_progress_bar: true
|
| 147 |
+
limit_val_batches: 0.5
|
| 148 |
+
check_val_every_n_epoch: 100
|
| 149 |
+
optimizer:
|
| 150 |
+
class_path: torch.optim.Adam
|
| 151 |
+
init_args:
|
| 152 |
+
lr: 3.629490873183724e-05
|
Trig-SDE-Gamma/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7fd313b4ce18394628596dce790ba5a6e58bd37a1fe5f7c0c78be6a2e3ab0fb5
|
| 3 |
+
size 148082778
|
Trig-SDE-Gamma/train.yaml
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant: omg.si.interpolants.PeriodicTrigonometricInterpolant
|
| 12 |
+
gamma:
|
| 13 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 14 |
+
init_args:
|
| 15 |
+
a: 0.049242906264339095
|
| 16 |
+
epsilon:
|
| 17 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 18 |
+
init_args:
|
| 19 |
+
c: 9.418703639528207
|
| 20 |
+
mu: 0.1967838464371502
|
| 21 |
+
sigma: 0.040028404066547216
|
| 22 |
+
differential_equation_type: "SDE"
|
| 23 |
+
integrator_kwargs:
|
| 24 |
+
method: "euler"
|
| 25 |
+
dt: 0.0013504737289622426
|
| 26 |
+
velocity_annealing_factor: 11.483173553510193
|
| 27 |
+
correct_center_of_mass_motion: true
|
| 28 |
+
# lattice vectors
|
| 29 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 30 |
+
init_args:
|
| 31 |
+
interpolant: omg.si.interpolants.TrigonometricInterpolant
|
| 32 |
+
gamma: null
|
| 33 |
+
epsilon: null
|
| 34 |
+
differential_equation_type: "ODE"
|
| 35 |
+
integrator_kwargs:
|
| 36 |
+
method: "euler"
|
| 37 |
+
velocity_annealing_factor: 0.4337356395028541
|
| 38 |
+
correct_center_of_mass_motion: false
|
| 39 |
+
data_fields:
|
| 40 |
+
# if the order of the data_fields changes,
|
| 41 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 42 |
+
- "species"
|
| 43 |
+
- "pos"
|
| 44 |
+
- "cell"
|
| 45 |
+
integration_time_steps: 740
|
| 46 |
+
relative_si_costs:
|
| 47 |
+
species_loss: 0.0
|
| 48 |
+
pos_loss_b: 0.24677273761024368
|
| 49 |
+
pos_loss_z: 0.7231540118244248
|
| 50 |
+
cell_loss_b: 0.030073250565331323
|
| 51 |
+
sampler:
|
| 52 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 53 |
+
init_args:
|
| 54 |
+
pos_distribution: null
|
| 55 |
+
cell_distribution:
|
| 56 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 57 |
+
init_args:
|
| 58 |
+
dataset_name: mpts_52
|
| 59 |
+
species_distribution:
|
| 60 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 61 |
+
model:
|
| 62 |
+
class_path: omg.model.model.Model
|
| 63 |
+
init_args:
|
| 64 |
+
encoder:
|
| 65 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 66 |
+
head:
|
| 67 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 68 |
+
time_embedder:
|
| 69 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 70 |
+
init_args:
|
| 71 |
+
dim: 256
|
| 72 |
+
use_min_perm_dist: True
|
| 73 |
+
float_32_matmul_precision: "high"
|
| 74 |
+
validation_mode: "match_rate"
|
| 75 |
+
number_cpus: 7
|
| 76 |
+
dataset_name: "mpts_52"
|
| 77 |
+
data:
|
| 78 |
+
train_dataset:
|
| 79 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 80 |
+
init_args:
|
| 81 |
+
dataset:
|
| 82 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 83 |
+
init_args:
|
| 84 |
+
lmdb_paths:
|
| 85 |
+
- "data/mpts_52/train.lmdb"
|
| 86 |
+
niggli: False
|
| 87 |
+
val_dataset:
|
| 88 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 89 |
+
init_args:
|
| 90 |
+
dataset:
|
| 91 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 92 |
+
init_args:
|
| 93 |
+
lmdb_paths:
|
| 94 |
+
- "data/mpts_52/val.lmdb"
|
| 95 |
+
niggli: False
|
| 96 |
+
predict_dataset:
|
| 97 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 98 |
+
init_args:
|
| 99 |
+
dataset:
|
| 100 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 101 |
+
init_args:
|
| 102 |
+
lmdb_paths:
|
| 103 |
+
- "data/mpts_52/test.lmdb"
|
| 104 |
+
niggli: False
|
| 105 |
+
batch_size: 32
|
| 106 |
+
num_workers: 4
|
| 107 |
+
pin_memory: True
|
| 108 |
+
persistent_workers: True
|
| 109 |
+
trainer:
|
| 110 |
+
callbacks:
|
| 111 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 112 |
+
init_args:
|
| 113 |
+
filename: "best_val_loss_total"
|
| 114 |
+
save_top_k: 1
|
| 115 |
+
monitor: "val_loss_total"
|
| 116 |
+
save_weights_only: true
|
| 117 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 118 |
+
init_args:
|
| 119 |
+
filename: "best_val_match_rate"
|
| 120 |
+
save_top_k: 1
|
| 121 |
+
monitor: "match_rate"
|
| 122 |
+
save_weights_only: true
|
| 123 |
+
mode: 'max'
|
| 124 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 125 |
+
init_args:
|
| 126 |
+
filename: "best_val_rmsd"
|
| 127 |
+
save_top_k: 1
|
| 128 |
+
monitor: "mean_rmsd"
|
| 129 |
+
save_weights_only: true
|
| 130 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 131 |
+
init_args:
|
| 132 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 133 |
+
monitor: "val_loss_total"
|
| 134 |
+
every_n_epochs: 100
|
| 135 |
+
save_weights_only: false
|
| 136 |
+
gradient_clip_val: 0.5
|
| 137 |
+
num_sanity_val_steps: 0
|
| 138 |
+
precision: "32-true"
|
| 139 |
+
max_epochs: 2000
|
| 140 |
+
enable_progress_bar: true
|
| 141 |
+
limit_val_batches: 0.5
|
| 142 |
+
check_val_every_n_epoch: 100
|
| 143 |
+
optimizer:
|
| 144 |
+
class_path: torch.optim.Adam
|
| 145 |
+
init_args:
|
| 146 |
+
lr: 9.320780466656964e-05
|
VESBD-ODE/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:64cb0f57a91fd0d53d8710f6a6e5e86baefc4ee18a5bf7c0db7e74aad10e89b5
|
| 3 |
+
size 49644411
|
VESBD-ODE/train.yaml
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant_os.SingleStochasticInterpolantOS
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant:
|
| 12 |
+
class_path: omg.si.interpolants.PeriodicScoreBasedDiffusionModelInterpolantVE
|
| 13 |
+
init_args:
|
| 14 |
+
sigma:
|
| 15 |
+
class_path: omg.si.sigma.GeometricSigma
|
| 16 |
+
init_args:
|
| 17 |
+
sigma_min: 0.004705415831077799
|
| 18 |
+
sigma_max: 0.9967130801483843
|
| 19 |
+
epsilon: null
|
| 20 |
+
differential_equation_type: "ODE"
|
| 21 |
+
integrator_kwargs:
|
| 22 |
+
method: "euler"
|
| 23 |
+
velocity_annealing_factor: 8.284579088906593
|
| 24 |
+
correct_center_of_mass_motion: true
|
| 25 |
+
predict_velocity: true
|
| 26 |
+
# lattice vectors
|
| 27 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 28 |
+
init_args:
|
| 29 |
+
interpolant: omg.si.interpolants.LinearInterpolant
|
| 30 |
+
gamma:
|
| 31 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 32 |
+
init_args:
|
| 33 |
+
a: 0.016616684357970132
|
| 34 |
+
epsilon:
|
| 35 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 36 |
+
init_args:
|
| 37 |
+
c: 3.9372558236242052
|
| 38 |
+
mu: 0.2649556265396099
|
| 39 |
+
sigma: 0.03578203230805775
|
| 40 |
+
differential_equation_type: "SDE"
|
| 41 |
+
integrator_kwargs:
|
| 42 |
+
method: "euler"
|
| 43 |
+
dt: 0.0015144158387556672
|
| 44 |
+
velocity_annealing_factor: 0.42775377056075214
|
| 45 |
+
correct_center_of_mass_motion: false
|
| 46 |
+
data_fields:
|
| 47 |
+
# if the order of the data_fields changes,
|
| 48 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 49 |
+
- "species"
|
| 50 |
+
- "pos"
|
| 51 |
+
- "cell"
|
| 52 |
+
integration_time_steps: 660
|
| 53 |
+
relative_si_costs:
|
| 54 |
+
species_loss: 0.0
|
| 55 |
+
pos_loss_b: 0.9813067351598369
|
| 56 |
+
cell_loss_b: 0.0005256953168558359
|
| 57 |
+
cell_loss_z: 0.018167569523307267
|
| 58 |
+
sampler:
|
| 59 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 60 |
+
init_args:
|
| 61 |
+
pos_distribution:
|
| 62 |
+
class_path: omg.sampler.distributions.NormalDistribution
|
| 63 |
+
init_args:
|
| 64 |
+
scale: 9.77149759679434
|
| 65 |
+
cell_distribution:
|
| 66 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 67 |
+
init_args:
|
| 68 |
+
dataset_name: mpts_52
|
| 69 |
+
species_distribution:
|
| 70 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 71 |
+
model:
|
| 72 |
+
class_path: omg.model.model.Model
|
| 73 |
+
init_args:
|
| 74 |
+
encoder:
|
| 75 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 76 |
+
head:
|
| 77 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 78 |
+
time_embedder:
|
| 79 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 80 |
+
init_args:
|
| 81 |
+
dim: 256
|
| 82 |
+
use_min_perm_dist: False
|
| 83 |
+
float_32_matmul_precision: "high"
|
| 84 |
+
validation_mode: "match_rate"
|
| 85 |
+
number_cpus: 7
|
| 86 |
+
dataset_name: "mpts_52"
|
| 87 |
+
data:
|
| 88 |
+
train_dataset:
|
| 89 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 90 |
+
init_args:
|
| 91 |
+
dataset:
|
| 92 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 93 |
+
init_args:
|
| 94 |
+
lmdb_paths:
|
| 95 |
+
- "data/mpts_52/train.lmdb"
|
| 96 |
+
niggli: False
|
| 97 |
+
val_dataset:
|
| 98 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 99 |
+
init_args:
|
| 100 |
+
dataset:
|
| 101 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 102 |
+
init_args:
|
| 103 |
+
lmdb_paths:
|
| 104 |
+
- "data/mpts_52/val.lmdb"
|
| 105 |
+
niggli: False
|
| 106 |
+
predict_dataset:
|
| 107 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 108 |
+
init_args:
|
| 109 |
+
dataset:
|
| 110 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 111 |
+
init_args:
|
| 112 |
+
lmdb_paths:
|
| 113 |
+
- "data/mpts_52/test.lmdb"
|
| 114 |
+
niggli: False
|
| 115 |
+
batch_size: 256
|
| 116 |
+
num_workers: 4
|
| 117 |
+
pin_memory: True
|
| 118 |
+
persistent_workers: True
|
| 119 |
+
trainer:
|
| 120 |
+
callbacks:
|
| 121 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 122 |
+
init_args:
|
| 123 |
+
filename: "best_val_loss_total"
|
| 124 |
+
save_top_k: 1
|
| 125 |
+
monitor: "val_loss_total"
|
| 126 |
+
save_weights_only: true
|
| 127 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 128 |
+
init_args:
|
| 129 |
+
filename: "best_val_match_rate"
|
| 130 |
+
save_top_k: 1
|
| 131 |
+
monitor: "match_rate"
|
| 132 |
+
save_weights_only: true
|
| 133 |
+
mode: 'max'
|
| 134 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 135 |
+
init_args:
|
| 136 |
+
filename: "best_val_rmsd"
|
| 137 |
+
save_top_k: 1
|
| 138 |
+
monitor: "mean_rmsd"
|
| 139 |
+
save_weights_only: true
|
| 140 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 141 |
+
init_args:
|
| 142 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 143 |
+
monitor: "val_loss_total"
|
| 144 |
+
every_n_epochs: 100
|
| 145 |
+
save_weights_only: false
|
| 146 |
+
gradient_clip_val: 0.5
|
| 147 |
+
num_sanity_val_steps: 0
|
| 148 |
+
precision: "32-true"
|
| 149 |
+
max_epochs: 2000
|
| 150 |
+
enable_progress_bar: true
|
| 151 |
+
limit_val_batches: 0.5
|
| 152 |
+
check_val_every_n_epoch: 100
|
| 153 |
+
optimizer:
|
| 154 |
+
class_path: torch.optim.Adam
|
| 155 |
+
init_args:
|
| 156 |
+
lr: 0.000296636127734534
|
VPSBD-ODE/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f39a43f38e06f45c8185d13fee14d4d14687b6979120958a9640c461bd0e6181
|
| 3 |
+
size 148069280
|
VPSBD-ODE/train.yaml
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant_os.SingleStochasticInterpolantOS
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant: omg.si.interpolants.PeriodicScoreBasedDiffusionModelInterpolant
|
| 12 |
+
epsilon: null
|
| 13 |
+
differential_equation_type: "ODE"
|
| 14 |
+
integrator_kwargs:
|
| 15 |
+
method: "euler"
|
| 16 |
+
velocity_annealing_factor: 6.613808424917352
|
| 17 |
+
correct_center_of_mass_motion: true
|
| 18 |
+
predict_velocity: true
|
| 19 |
+
# lattice vectors
|
| 20 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 21 |
+
init_args:
|
| 22 |
+
interpolant: omg.si.interpolants.LinearInterpolant
|
| 23 |
+
gamma: null
|
| 24 |
+
epsilon: null
|
| 25 |
+
differential_equation_type: "ODE"
|
| 26 |
+
integrator_kwargs:
|
| 27 |
+
method: "euler"
|
| 28 |
+
velocity_annealing_factor: 2.447993013544224
|
| 29 |
+
correct_center_of_mass_motion: false
|
| 30 |
+
data_fields:
|
| 31 |
+
# if the order of the data_fields changes,
|
| 32 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 33 |
+
- "species"
|
| 34 |
+
- "pos"
|
| 35 |
+
- "cell"
|
| 36 |
+
integration_time_steps: 890
|
| 37 |
+
relative_si_costs:
|
| 38 |
+
species_loss: 0.0
|
| 39 |
+
pos_loss_b: 0.9597565150933746
|
| 40 |
+
cell_loss_b: 0.04024348490662539
|
| 41 |
+
sampler:
|
| 42 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 43 |
+
init_args:
|
| 44 |
+
pos_distribution:
|
| 45 |
+
class_path: omg.sampler.distributions.NormalDistribution
|
| 46 |
+
init_args:
|
| 47 |
+
scale: 0.22006712732536396
|
| 48 |
+
cell_distribution:
|
| 49 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 50 |
+
init_args:
|
| 51 |
+
dataset_name: mpts_52
|
| 52 |
+
species_distribution:
|
| 53 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 54 |
+
model:
|
| 55 |
+
class_path: omg.model.model.Model
|
| 56 |
+
init_args:
|
| 57 |
+
encoder:
|
| 58 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 59 |
+
head:
|
| 60 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 61 |
+
time_embedder:
|
| 62 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 63 |
+
init_args:
|
| 64 |
+
dim: 256
|
| 65 |
+
use_min_perm_dist: True
|
| 66 |
+
float_32_matmul_precision: "high"
|
| 67 |
+
validation_mode: "match_rate"
|
| 68 |
+
number_cpus: 7
|
| 69 |
+
dataset_name: "mpts_52"
|
| 70 |
+
data:
|
| 71 |
+
train_dataset:
|
| 72 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 73 |
+
init_args:
|
| 74 |
+
dataset:
|
| 75 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 76 |
+
init_args:
|
| 77 |
+
lmdb_paths:
|
| 78 |
+
- "data/mpts_52/train.lmdb"
|
| 79 |
+
niggli: False
|
| 80 |
+
val_dataset:
|
| 81 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 82 |
+
init_args:
|
| 83 |
+
dataset:
|
| 84 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 85 |
+
init_args:
|
| 86 |
+
lmdb_paths:
|
| 87 |
+
- "data/mpts_52/val.lmdb"
|
| 88 |
+
niggli: False
|
| 89 |
+
predict_dataset:
|
| 90 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 91 |
+
init_args:
|
| 92 |
+
dataset:
|
| 93 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 94 |
+
init_args:
|
| 95 |
+
lmdb_paths:
|
| 96 |
+
- "data/mpts_52/test.lmdb"
|
| 97 |
+
niggli: False
|
| 98 |
+
batch_size: 64
|
| 99 |
+
num_workers: 4
|
| 100 |
+
pin_memory: True
|
| 101 |
+
persistent_workers: True
|
| 102 |
+
trainer:
|
| 103 |
+
callbacks:
|
| 104 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 105 |
+
init_args:
|
| 106 |
+
filename: "best_val_loss_total"
|
| 107 |
+
save_top_k: 1
|
| 108 |
+
monitor: "val_loss_total"
|
| 109 |
+
save_weights_only: true
|
| 110 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 111 |
+
init_args:
|
| 112 |
+
filename: "best_val_match_rate"
|
| 113 |
+
save_top_k: 1
|
| 114 |
+
monitor: "match_rate"
|
| 115 |
+
save_weights_only: true
|
| 116 |
+
mode: 'max'
|
| 117 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 118 |
+
init_args:
|
| 119 |
+
filename: "best_val_rmsd"
|
| 120 |
+
save_top_k: 1
|
| 121 |
+
monitor: "mean_rmsd"
|
| 122 |
+
save_weights_only: true
|
| 123 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 124 |
+
init_args:
|
| 125 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 126 |
+
monitor: "val_loss_total"
|
| 127 |
+
every_n_epochs: 100
|
| 128 |
+
save_weights_only: false
|
| 129 |
+
gradient_clip_val: 0.5
|
| 130 |
+
num_sanity_val_steps: 0
|
| 131 |
+
precision: "32-true"
|
| 132 |
+
max_epochs: 2000
|
| 133 |
+
enable_progress_bar: true
|
| 134 |
+
limit_val_batches: 0.5
|
| 135 |
+
check_val_every_n_epoch: 100
|
| 136 |
+
optimizer:
|
| 137 |
+
class_path: torch.optim.Adam
|
| 138 |
+
init_args:
|
| 139 |
+
lr: 2.519765029616902e-05
|
VPSBD-SDE/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d49763d63ce905025b23efa6babcc6ab237cb1684daec33f055b4452dd3825c
|
| 3 |
+
size 49644475
|
VPSBD-SDE/train.yaml
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant_os.SingleStochasticInterpolantOS
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant: omg.si.interpolants.PeriodicScoreBasedDiffusionModelInterpolant
|
| 12 |
+
epsilon:
|
| 13 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 14 |
+
init_args:
|
| 15 |
+
c: 2.4729222108905815
|
| 16 |
+
mu: 0.17656358406313838
|
| 17 |
+
sigma: 0.02379822283154629
|
| 18 |
+
differential_equation_type: "SDE"
|
| 19 |
+
integrator_kwargs:
|
| 20 |
+
method: "euler"
|
| 21 |
+
dt: 0.0016661101253703237
|
| 22 |
+
velocity_annealing_factor: 6.459028320375323
|
| 23 |
+
correct_center_of_mass_motion: true
|
| 24 |
+
predict_velocity: true
|
| 25 |
+
# lattice vectors
|
| 26 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 27 |
+
init_args:
|
| 28 |
+
interpolant: omg.si.interpolants.LinearInterpolant
|
| 29 |
+
gamma:
|
| 30 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 31 |
+
init_args:
|
| 32 |
+
a: 3.683542379054881
|
| 33 |
+
epsilon: null
|
| 34 |
+
differential_equation_type: "ODE"
|
| 35 |
+
integrator_kwargs:
|
| 36 |
+
method: "euler"
|
| 37 |
+
velocity_annealing_factor: 0.6692350794589719
|
| 38 |
+
correct_center_of_mass_motion: false
|
| 39 |
+
data_fields:
|
| 40 |
+
# if the order of the data_fields changes,
|
| 41 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 42 |
+
- "species"
|
| 43 |
+
- "pos"
|
| 44 |
+
- "cell"
|
| 45 |
+
integration_time_steps: 600
|
| 46 |
+
relative_si_costs:
|
| 47 |
+
species_loss: 0.0
|
| 48 |
+
pos_loss_b: 0.6060249654155797
|
| 49 |
+
pos_loss_z: 0.3828230559814603
|
| 50 |
+
cell_loss_b: 0.011151978602959979
|
| 51 |
+
sampler:
|
| 52 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 53 |
+
init_args:
|
| 54 |
+
pos_distribution:
|
| 55 |
+
class_path: omg.sampler.distributions.NormalDistribution
|
| 56 |
+
init_args:
|
| 57 |
+
scale: 2.2937003279036148
|
| 58 |
+
cell_distribution:
|
| 59 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 60 |
+
init_args:
|
| 61 |
+
dataset_name: mpts_52
|
| 62 |
+
species_distribution:
|
| 63 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 64 |
+
model:
|
| 65 |
+
class_path: omg.model.model.Model
|
| 66 |
+
init_args:
|
| 67 |
+
encoder:
|
| 68 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 69 |
+
head:
|
| 70 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 71 |
+
time_embedder:
|
| 72 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 73 |
+
init_args:
|
| 74 |
+
dim: 256
|
| 75 |
+
use_min_perm_dist: True
|
| 76 |
+
float_32_matmul_precision: "high"
|
| 77 |
+
validation_mode: "match_rate"
|
| 78 |
+
number_cpus: 7
|
| 79 |
+
dataset_name: "mpts_52"
|
| 80 |
+
data:
|
| 81 |
+
train_dataset:
|
| 82 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 83 |
+
init_args:
|
| 84 |
+
dataset:
|
| 85 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 86 |
+
init_args:
|
| 87 |
+
lmdb_paths:
|
| 88 |
+
- "data/mpts_52/train.lmdb"
|
| 89 |
+
niggli: False
|
| 90 |
+
val_dataset:
|
| 91 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 92 |
+
init_args:
|
| 93 |
+
dataset:
|
| 94 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 95 |
+
init_args:
|
| 96 |
+
lmdb_paths:
|
| 97 |
+
- "data/mpts_52/val.lmdb"
|
| 98 |
+
niggli: False
|
| 99 |
+
predict_dataset:
|
| 100 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 101 |
+
init_args:
|
| 102 |
+
dataset:
|
| 103 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 104 |
+
init_args:
|
| 105 |
+
lmdb_paths:
|
| 106 |
+
- "data/mpts_52/test.lmdb"
|
| 107 |
+
niggli: False
|
| 108 |
+
batch_size: 64
|
| 109 |
+
num_workers: 4
|
| 110 |
+
pin_memory: True
|
| 111 |
+
persistent_workers: True
|
| 112 |
+
trainer:
|
| 113 |
+
callbacks:
|
| 114 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 115 |
+
init_args:
|
| 116 |
+
filename: "best_val_loss_total"
|
| 117 |
+
save_top_k: 1
|
| 118 |
+
monitor: "val_loss_total"
|
| 119 |
+
save_weights_only: true
|
| 120 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 121 |
+
init_args:
|
| 122 |
+
filename: "best_val_match_rate"
|
| 123 |
+
save_top_k: 1
|
| 124 |
+
monitor: "match_rate"
|
| 125 |
+
save_weights_only: true
|
| 126 |
+
mode: 'max'
|
| 127 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 128 |
+
init_args:
|
| 129 |
+
filename: "best_val_rmsd"
|
| 130 |
+
save_top_k: 1
|
| 131 |
+
monitor: "mean_rmsd"
|
| 132 |
+
save_weights_only: true
|
| 133 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 134 |
+
init_args:
|
| 135 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 136 |
+
monitor: "val_loss_total"
|
| 137 |
+
every_n_epochs: 100
|
| 138 |
+
save_weights_only: false
|
| 139 |
+
gradient_clip_val: 0.5
|
| 140 |
+
num_sanity_val_steps: 0
|
| 141 |
+
precision: "32-true"
|
| 142 |
+
max_epochs: 2000
|
| 143 |
+
enable_progress_bar: true
|
| 144 |
+
limit_val_batches: 0.5
|
| 145 |
+
check_val_every_n_epoch: 100
|
| 146 |
+
optimizer:
|
| 147 |
+
class_path: torch.optim.Adam
|
| 148 |
+
init_args:
|
| 149 |
+
lr: 0.0003030820420973639
|