Release AI-ModelZoo-4.0.0
Browse files
README.md
CHANGED
|
@@ -3,6 +3,7 @@ license: apache-2.0
|
|
| 3 |
license_link: >-
|
| 4 |
https://github.st.com/AIS/stm32ai-modelzoo/raw/master/neural-style-transfer/LICENSE.md
|
| 5 |
---
|
|
|
|
| 6 |
# Xinet_picasso_muse
|
| 7 |
|
| 8 |
## **Use case** : `Neural style transfer`
|
|
@@ -36,21 +37,21 @@ Xinet_picasso_muse is implemented initially in Pytorch and is quantized in int8
|
|
| 36 |
# Performances
|
| 37 |
|
| 38 |
## Metrics
|
| 39 |
-
Measures are done with default
|
| 40 |
|
| 41 |
|
| 42 |
### Reference **NPU** memory footprint based on COCO dataset
|
| 43 |
|
| 44 |
-
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) |
|
| 45 |
-
|
| 46 |
-
| [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6 |
|
| 47 |
|
| 48 |
|
| 49 |
|
| 50 |
### Reference **NPU** inference time based on COCO Person dataset
|
| 51 |
-
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec |
|
| 52 |
-
|
| 53 |
-
| [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6570-DK | NPU/MCU |
|
| 54 |
|
| 55 |
|
| 56 |
## Retraining and Integration in a Simple Example
|
|
|
|
| 3 |
license_link: >-
|
| 4 |
https://github.st.com/AIS/stm32ai-modelzoo/raw/master/neural-style-transfer/LICENSE.md
|
| 5 |
---
|
| 6 |
+
|
| 7 |
# Xinet_picasso_muse
|
| 8 |
|
| 9 |
## **Use case** : `Neural style transfer`
|
|
|
|
| 37 |
# Performances
|
| 38 |
|
| 39 |
## Metrics
|
| 40 |
+
Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
|
| 41 |
|
| 42 |
|
| 43 |
### Reference **NPU** memory footprint based on COCO dataset
|
| 44 |
|
| 45 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STEdgeAI Core version |
|
| 46 |
+
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|-------------------------|
|
| 47 |
+
| [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/xinet_picasso_muse/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6 | 2568.12 | 1200 | 851.86 | 3.0.0
|
| 48 |
|
| 49 |
|
| 50 |
|
| 51 |
### Reference **NPU** inference time based on COCO Person dataset
|
| 52 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|
| 53 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|-------------------------|
|
| 54 |
+
| [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/xinet_picasso_muse/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6570-DK | NPU/MCU | 93.83 | 10.65 | 3.0.0 |
|
| 55 |
|
| 56 |
|
| 57 |
## Retraining and Integration in a Simple Example
|