FBAGSTM commited on
Commit
3383da4
·
verified ·
1 Parent(s): 09f4f17

Release AI-ModelZoo-4.0.0

Browse files
Files changed (1) hide show
  1. README.md +8 -7
README.md CHANGED
@@ -3,6 +3,7 @@ license: apache-2.0
3
  license_link: >-
4
  https://github.st.com/AIS/stm32ai-modelzoo/raw/master/neural-style-transfer/LICENSE.md
5
  ---
 
6
  # Xinet_picasso_muse
7
 
8
  ## **Use case** : `Neural style transfer`
@@ -36,21 +37,21 @@ Xinet_picasso_muse is implemented initially in Pytorch and is quantized in int8
36
  # Performances
37
 
38
  ## Metrics
39
- Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
40
 
41
 
42
  ### Reference **NPU** memory footprint based on COCO dataset
43
 
44
- |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
45
- |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
46
- | [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6 | 2685.38 | 600.0 | 851.86 | 10.2.0 | 2.2.0
47
 
48
 
49
 
50
  ### Reference **NPU** inference time based on COCO Person dataset
51
- | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
52
- |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
53
- | [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6570-DK | NPU/MCU | 61.96 | 16.13 | 10.2.0 | 2.2.0 |
54
 
55
 
56
  ## Retraining and Integration in a Simple Example
 
3
  license_link: >-
4
  https://github.st.com/AIS/stm32ai-modelzoo/raw/master/neural-style-transfer/LICENSE.md
5
  ---
6
+
7
  # Xinet_picasso_muse
8
 
9
  ## **Use case** : `Neural style transfer`
 
37
  # Performances
38
 
39
  ## Metrics
40
+ Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
41
 
42
 
43
  ### Reference **NPU** memory footprint based on COCO dataset
44
 
45
+ |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STEdgeAI Core version |
46
+ |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|-------------------------|
47
+ | [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/xinet_picasso_muse/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6 | 2568.12 | 1200 | 851.86 | 3.0.0
48
 
49
 
50
 
51
  ### Reference **NPU** inference time based on COCO Person dataset
52
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
53
+ |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|-------------------------|
54
+ | [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/xinet_picasso_muse/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6570-DK | NPU/MCU | 93.83 | 10.65 | 3.0.0 |
55
 
56
 
57
  ## Retraining and Integration in a Simple Example