--- license: apache-2.0 license_link: >- https://github.st.com/AIS/stm32ai-modelzoo/raw/master/neural-style-transfer/LICENSE.md --- # Xinet_picasso_muse ## **Use case** : `Neural style transfer` # Model description Xinet_picasso_muse is a lightweight Neural Style Transfer approach based on [XiNets](https://openaccess.thecvf.com/content/ICCV2023/papers/Ancilotto_XiNet_Efficient_Neural_Networks_for_tinyML_ICCV_2023_paper.pdf), neural networks especially developed for microcontrollers and embedded applications. It has been trained using the COCO dataset for content images and the painting *La Muse* of **Pablo Picasso** for style image. This model achieves an extremely lightweight transfer style mechanism and high-quality stylized outputs, significantly reducing computational complexity. Xinet_picasso_muse is implemented initially in Pytorch and is quantized in int8 format using tensorflow lite converter. To reach a better performances, the mirror padding ops have been replaced with zero padding ops. ## Network information | Network Information | Value | |-------------------------|--------------------------------------| | Framework | Tensorflow | | Quantization | int8 | | Paper | [Link to Paper](https://www.computer.org/csdl/proceedings-article/percom-workshops/2024/10502435/1Wnrsw29p5e) | ## Recommended platform | Platform | Supported | Recommended | |----------|-----------|-------------| | STM32L0 | [] | [] | | STM32L4 | [] | [] | | STM32U5 | [] | [] | | STM32MP1 | [] | [] | | STM32MP2 | [] | [] | | STM32N6| [x] | [x] | --- # Performances ## Metrics Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option. ### Reference **NPU** memory footprint based on COCO dataset |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STEdgeAI Core version | |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|-------------------------| | [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/xinet_picasso_muse/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6 | 2568.12 | 1200 | 851.86 | 3.0.0 ### Reference **NPU** inference time based on COCO Person dataset | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version | |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|-------------------------| | [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/xinet_picasso_muse/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6570-DK | NPU/MCU | 93.83 | 10.65 | 3.0.0 | ## Retraining and Integration in a Simple Example Retraining and deployment services are currently not provided for this model. They should be supported in the future releases. ## References [1] "Painting the Starry Night using XiNets" Alberto Ancilotto, Elisabetta Farella - 2024 IEEE International Conference on Pervasive Computing [Link](https://www.computer.org/csdl/proceedings-article/percom-workshops/2024/10502435/1Wnrsw29p5e)