Update README.md
Browse files
README.md
CHANGED
|
@@ -18,17 +18,14 @@ metrics:
|
|
| 18 |
library_name: transformers
|
| 19 |
---
|
| 20 |
|
| 21 |
-
Industry standard text to sql generation with high accuracy.
|
| 22 |
|
| 23 |
-
|
| 24 |
|
| 25 |
import torch
|
| 26 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 27 |
-
|
| 28 |
-
# Initialize the tokenizer from Hugging Face Transformers library
|
| 29 |
tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard')
|
| 30 |
|
| 31 |
-
# Load the model
|
| 32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard')
|
| 34 |
model = model.to(device)
|
|
@@ -53,5 +50,5 @@ input_prompt = "provide count of students where class = 10"
|
|
| 53 |
generated_sql = generate_sql(input_prompt)
|
| 54 |
|
| 55 |
print(f"The generated SQL query is: {generated_sql}")
|
| 56 |
-
|
| 57 |
|
|
|
|
| 18 |
library_name: transformers
|
| 19 |
---
|
| 20 |
|
| 21 |
+
# Industry standard text to sql generation with high accuracy.
|
| 22 |
|
| 23 |
+
Sample code to begin with:
|
| 24 |
|
| 25 |
import torch
|
| 26 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
|
|
|
|
| 27 |
tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard')
|
| 28 |
|
|
|
|
| 29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard')
|
| 31 |
model = model.to(device)
|
|
|
|
| 50 |
generated_sql = generate_sql(input_prompt)
|
| 51 |
|
| 52 |
print(f"The generated SQL query is: {generated_sql}")
|
| 53 |
+
#expected output - SELECT COUNT(*) FROM students WHERE class = 10
|
| 54 |
|