Upload folder using huggingface_hub
Browse files- README.md +106 -0
- config.json +32 -0
- pytorch_model.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- Sleep-EDF
|
| 5 |
+
- TUAB
|
| 6 |
+
- MOABB
|
| 7 |
+
language:
|
| 8 |
+
- en
|
| 9 |
+
tags:
|
| 10 |
+
- eeg
|
| 11 |
+
- brain
|
| 12 |
+
- timeseries
|
| 13 |
+
- self-supervised
|
| 14 |
+
- transformer
|
| 15 |
+
- biomedical
|
| 16 |
+
- neuroscience
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# BENDR: BErt-inspired Neural Data Representations
|
| 20 |
+
|
| 21 |
+
Pretrained BENDR model for EEG classification tasks. This is the official Braindecode implementation
|
| 22 |
+
of BENDR from Kostas et al. (2021).
|
| 23 |
+
|
| 24 |
+
## Model Details
|
| 25 |
+
|
| 26 |
+
- **Model Type**: Transformer-based EEG encoder
|
| 27 |
+
- **Pretraining**: Self-supervised learning on masked sequence reconstruction
|
| 28 |
+
- **Architecture**:
|
| 29 |
+
- Convolutional Encoder: 6 blocks with 512 hidden units
|
| 30 |
+
- Transformer Contextualizer: 8 layers, 8 attention heads
|
| 31 |
+
- Total Parameters: ~157M
|
| 32 |
+
- **Input**: Raw EEG signals (20 channels, variable length)
|
| 33 |
+
- **Output**: Contextualized representations or class predictions
|
| 34 |
+
|
| 35 |
+
## Usage
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from braindecode.models import BENDR
|
| 39 |
+
import torch
|
| 40 |
+
|
| 41 |
+
# Load pretrained model
|
| 42 |
+
model = BENDR(n_chans=20, n_outputs=2)
|
| 43 |
+
|
| 44 |
+
# Load pretrained weights from Hugging Face
|
| 45 |
+
from huggingface_hub import hf_hub_download
|
| 46 |
+
checkpoint_path = hf_hub_download(repo_id="braindecode/bendr-pretrained-v1", filename="pytorch_model.bin")
|
| 47 |
+
checkpoint = torch.load(checkpoint_path)
|
| 48 |
+
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
|
| 49 |
+
|
| 50 |
+
# Use for inference
|
| 51 |
+
model.eval()
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
eeg_data = torch.randn(1, 20, 600) # (batch, channels, time)
|
| 54 |
+
predictions = model(eeg_data)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Fine-tuning
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
import torch
|
| 61 |
+
from torch.optim import Adam
|
| 62 |
+
|
| 63 |
+
# Freeze encoder for transfer learning
|
| 64 |
+
for param in model.encoder.parameters():
|
| 65 |
+
param.requires_grad = False
|
| 66 |
+
|
| 67 |
+
# Fine-tune on downstream task
|
| 68 |
+
optimizer = Adam(model.parameters(), lr=0.0001)
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## Paper
|
| 72 |
+
|
| 73 |
+
[BENDR: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data](https://doi.org/10.3389/fnhum.2021.653659)
|
| 74 |
+
|
| 75 |
+
Kostas, D., Aroca-Ouellette, S., & Rudzicz, F. (2021).
|
| 76 |
+
Frontiers in Human Neuroscience, 15, 653659.
|
| 77 |
+
|
| 78 |
+
## Citation
|
| 79 |
+
|
| 80 |
+
```bibtex
|
| 81 |
+
@article{kostas2021bendr,
|
| 82 |
+
title={BENDR: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data},
|
| 83 |
+
author={Kostas, Demetres and Aroca-Ouellette, St{\'e}phane and Rudzicz, Frank},
|
| 84 |
+
journal={Frontiers in Human Neuroscience},
|
| 85 |
+
volume={15},
|
| 86 |
+
pages={653659},
|
| 87 |
+
year={2021},
|
| 88 |
+
publisher={Frontiers}
|
| 89 |
+
}
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
## Implementation Notes
|
| 93 |
+
|
| 94 |
+
- Start token is correctly extracted at index 0 (BERT [CLS] convention)
|
| 95 |
+
- Uses T-Fixup weight initialization for stability
|
| 96 |
+
- Includes LayerDrop for regularization
|
| 97 |
+
- All architectural improvements from original paper maintained
|
| 98 |
+
|
| 99 |
+
## License
|
| 100 |
+
|
| 101 |
+
Apache 2.0
|
| 102 |
+
|
| 103 |
+
## Authors
|
| 104 |
+
|
| 105 |
+
- Braindecode Team
|
| 106 |
+
- Original paper: Kostas et al. (2021)
|
config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "bendr",
|
| 3 |
+
"n_chans": 20,
|
| 4 |
+
"encoder_h": 512,
|
| 5 |
+
"contextualizer_hidden": 3076,
|
| 6 |
+
"transformer_heads": 8,
|
| 7 |
+
"transformer_layers": 8,
|
| 8 |
+
"position_encoder_length": 25,
|
| 9 |
+
"drop_prob": 0.1,
|
| 10 |
+
"layer_drop": 0.0,
|
| 11 |
+
"start_token": -5,
|
| 12 |
+
"final_layer": true,
|
| 13 |
+
"projection_head": false,
|
| 14 |
+
"enc_width": [
|
| 15 |
+
3,
|
| 16 |
+
2,
|
| 17 |
+
2,
|
| 18 |
+
2,
|
| 19 |
+
2,
|
| 20 |
+
2
|
| 21 |
+
],
|
| 22 |
+
"enc_downsample": [
|
| 23 |
+
3,
|
| 24 |
+
2,
|
| 25 |
+
2,
|
| 26 |
+
2,
|
| 27 |
+
2,
|
| 28 |
+
2
|
| 29 |
+
],
|
| 30 |
+
"notes": "Pretrained BENDR model for EEG classification",
|
| 31 |
+
"paper": "https://doi.org/10.3389/fnhum.2021.653659"
|
| 32 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:58696d59ae4fb3d041837746c6c6225fa851841f68753e8cc28d4ecd4383d828
|
| 3 |
+
size 628594288
|