prompt-tackler_modernbert
This model is a fine-tuned version of jhu-clsp/mmBERT-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0119
- Accuracy: 0.9976
- Precision: 0.9976
- Recall: 0.9976
- F1: 0.9976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.03 | 1.0 | 18408 | 0.0181 | 0.9964 | 0.9964 | 0.9964 | 0.9964 |
| 0.0151 | 2.0 | 36816 | 0.0119 | 0.9976 | 0.9976 | 0.9976 | 0.9976 |
| 0.0118 | 3.0 | 55224 | 0.0161 | 0.9973 | 0.9973 | 0.9973 | 0.9973 |
| 0.0038 | 4.0 | 73632 | 0.0160 | 0.9978 | 0.9978 | 0.9978 | 0.9978 |
| 0.0007 | 5.0 | 92040 | 0.0191 | 0.9981 | 0.9981 | 0.9981 | 0.9981 |
| 0.0 | 6.0 | 110448 | 0.0224 | 0.9981 | 0.9981 | 0.9981 | 0.9981 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.9.1+cu128
- Datasets 2.21.0
- Tokenizers 0.21.4
- Downloads last month
- 51
Model tree for cgoosen/prompt-tackler_modernbert
Base model
jhu-clsp/mmBERT-small