|
|
|
|
|
|
|
|
from os.path import dirname, join |
|
|
import webdataset as wds |
|
|
from PIL import Image |
|
|
import io |
|
|
import json |
|
|
import numpy as np |
|
|
import argparse |
|
|
import matplotlib |
|
|
import matplotlib.pyplot as plt |
|
|
import os |
|
|
try: |
|
|
import imageio |
|
|
HAS_IMAGEIO = True |
|
|
except ImportError: |
|
|
HAS_IMAGEIO = False |
|
|
try: |
|
|
import cv2 |
|
|
HAS_CV2 = True |
|
|
except ImportError: |
|
|
HAS_CV2 = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_video(image_seq, output_path, fps=30, codec='libx264', quality=8): |
|
|
""" |
|
|
Dump a sequence of PIL Images to a video file. |
|
|
|
|
|
Args: |
|
|
image_seq: List of PIL Images |
|
|
output_path: Output video file path (e.g., 'output.mp4') |
|
|
fps: Frames per second (default: 30) |
|
|
codec: Video codec (default: 'libx264') |
|
|
quality: Video quality, 0-10, higher is better (default: 8) |
|
|
""" |
|
|
if not image_seq: |
|
|
print("Warning: Empty image sequence, skipping video dump") |
|
|
return |
|
|
|
|
|
if HAS_IMAGEIO: |
|
|
|
|
|
frames = [] |
|
|
for img in image_seq: |
|
|
|
|
|
frames.append(np.array(img)) |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
imageio.mimwrite(output_path, frames, fps=fps, codec=codec, quality=quality) |
|
|
except (AttributeError, TypeError): |
|
|
|
|
|
try: |
|
|
writer = imageio.get_writer(output_path, fps=fps, codec=codec) |
|
|
for frame in frames: |
|
|
writer.append_data(frame) |
|
|
writer.close() |
|
|
except Exception: |
|
|
|
|
|
writer = imageio.get_writer(output_path, fps=fps) |
|
|
for frame in frames: |
|
|
writer.append_data(frame) |
|
|
writer.close() |
|
|
print(f"Video saved to {output_path} using imageio") |
|
|
|
|
|
elif HAS_CV2: |
|
|
|
|
|
if not image_seq: |
|
|
return |
|
|
|
|
|
|
|
|
first_img = image_seq[0] |
|
|
height, width = first_img.size[1], first_img.size[0] |
|
|
|
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*codec if len(codec) == 4 else 'mp4v') |
|
|
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) |
|
|
|
|
|
for img in image_seq: |
|
|
|
|
|
img_array = np.array(img) |
|
|
if len(img_array.shape) == 3: |
|
|
if img_array.shape[2] == 3: |
|
|
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) |
|
|
elif img_array.shape[2] == 4: |
|
|
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2BGR) |
|
|
out.write(img_array) |
|
|
|
|
|
out.release() |
|
|
print(f"Video saved to {output_path} using OpenCV") |
|
|
|
|
|
else: |
|
|
raise ImportError("Neither imageio nor cv2 is available. Please install one: pip install imageio[ffmpeg] or pip install opencv-python") |
|
|
|
|
|
|
|
|
|
|
|
def parse_depth_16bit(depth_image: Image.Image, max_depth: float) -> np.ndarray: |
|
|
"""Parse 16-bit depth image back to actual depth values.""" |
|
|
|
|
|
depth_array = np.array(depth_image, dtype=np.uint16) |
|
|
|
|
|
|
|
|
depth_normalized = depth_array.astype(np.float32) / 65535.0 |
|
|
actual_depth = depth_normalized * max_depth |
|
|
|
|
|
return actual_depth |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def colorize_depth_map(depth, mask=None, reverse_color=False): |
|
|
from decord import VideoReader,cpu |
|
|
|
|
|
cm = matplotlib.colormaps["Spectral"] |
|
|
|
|
|
|
|
|
if reverse_color: |
|
|
img_colored_np = cm(1 - depth, bytes=False)[:, :, 0:3] |
|
|
else: |
|
|
img_colored_np = cm(depth, bytes=False)[:, :, 0:3] |
|
|
|
|
|
depth_colored = (img_colored_np * 255).astype(np.uint8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
depth_colored_img = Image.fromarray(depth_colored) |
|
|
return depth_colored_img |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
args = argparse.ArgumentParser() |
|
|
args.add_argument('--data_path', type=str, default='data/TransPhy3D/parametric_train/training/0_materials.000000.tar') |
|
|
args.add_argument('--output_path', type=str, default='output') |
|
|
args = args.parse_args() |
|
|
|
|
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
|
|
|
|
|
|
dataset = wds.WebDataset(args.data_path) |
|
|
data = {} |
|
|
|
|
|
depth_seq_raw = [] |
|
|
depth_max_values = [] |
|
|
normal_seq = [] |
|
|
rgbs_seq = [] |
|
|
meta_info =[] |
|
|
|
|
|
|
|
|
for sample in dataset: |
|
|
depth_img = None |
|
|
max_depth = None |
|
|
for key, value in sample.items(): |
|
|
|
|
|
if not isinstance(value, (bytes, bytearray)): |
|
|
continue |
|
|
|
|
|
|
|
|
if key == 'depth.png': |
|
|
|
|
|
depth_img = Image.open(io.BytesIO(value)) |
|
|
elif key == 'depth.json': |
|
|
|
|
|
depth_info = json.loads(value) |
|
|
max_depth = depth_info.get('max_depth', None) |
|
|
elif key == 'normal.png': |
|
|
img = Image.open(io.BytesIO(value)) |
|
|
normal_seq.append(img) |
|
|
elif key == 'image.png': |
|
|
img = Image.open(io.BytesIO(value)) |
|
|
rgbs_seq.append(img) |
|
|
elif key.endswith('.json'): |
|
|
meta_info.append(json.loads(value)) |
|
|
|
|
|
|
|
|
if depth_img is not None: |
|
|
depth_seq_raw.append(depth_img) |
|
|
depth_max_values.append(max_depth) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
depth_seq_vis = [] |
|
|
for depth_img, max_depth in zip(depth_seq_raw, depth_max_values): |
|
|
if max_depth is not None: |
|
|
|
|
|
|
|
|
actual_depth = parse_depth_16bit(depth_img, max_depth) |
|
|
|
|
|
|
|
|
depth_normalized = actual_depth / max_depth |
|
|
depth_colored_img = colorize_depth_map(depth_normalized) |
|
|
|
|
|
depth_seq_vis.append(depth_colored_img) |
|
|
else: |
|
|
|
|
|
depth_seq_vis.append(depth_img.convert('L')) |
|
|
|
|
|
|
|
|
|
|
|
dump_video(rgbs_seq, join(args.output_path, 'output_rgb.mp4'), fps=30) |
|
|
dump_video(normal_seq, join(args.output_path, 'output_normal.mp4'), fps=30) |
|
|
dump_video(depth_seq_vis, join(args.output_path, 'output_depth.mp4'), fps=30) |
|
|
|