--- license: mit ---

TeleEgo:
Benchmarking Egocentric AI Assistants in the Wild

arXiv Page GitHub

๐Ÿ“ข **Note**๏ผšThis project is still under active development, and the benchmark will be continuously updated.
## ๐Ÿ“Œ Introduction **TeleEgo** is a comprehensive **omni benchmark** designed for **multi-person, multi-scene, multi-task, and multimodal long-term memory reasoning** in egocentric video streams. It reflects realistic personal assistant scenarios where continuous egocentric video data is collected across hours or even days, requiring models to maintain and reason over **memory, understanding, and cross-memory reasoning**. **Omni** here means that TeleEgo covers the full spectrum of **roles, scenes, tasks, modalities, and memory horizons**, offering all-round evaluation for egocentric AI assistants. **TeleEgo provides:** - ๐Ÿง  **Omni-scale, diverse egocentric data** from 5 roles across 4 daily scenarios. - ๐ŸŽค **Multi-modal annotations**: video, narration, and speech transcripts. - โ“ **Fine-grained QA benchmark**: 3 cognitive dimensions, 12 subcategories. --- ## ๐Ÿ“Š Dataset Overview - **Participants**: 5 (balanced gender) - **Scenarios**: - Work & Study - Lifestyle & Routines - Social Activities - Outings & Culture - **Recording**: 3 days/participant (~14.4 hours each) - **Modalities**: - Egocentric video streams - Speech & conversations - Narration and event descriptions --- ## Download ```bash # Extract (only need to specify the first file) 7z x archive.7z.001 # Or extract to a specific directory 7z x archive.7z.001 -o./extracted_data ``` ## Dataset Structure After extraction, the dataset structure is: ``` TeleEgo/ โ”œโ”€โ”€ merged_P1_A.json # QA annotations for Participant 1 โ”œโ”€โ”€ merged_P2_A.json # QA annotations for Participant 2 โ”œโ”€โ”€ merged_P3_A.json # QA annotations for Participant 3 โ”œโ”€โ”€ merged_P4_A.json # QA annotations for Participant 4 โ”œโ”€โ”€ merged_P5_A.json # QA annotations for Participant 5 โ”œโ”€โ”€ merged_P1.mp4 # Video stream for Participant 1 (~46GB) โ”œโ”€โ”€ merged_P2.mp4 # Video stream for Participant 2 (~35GB) โ”œโ”€โ”€ merged_P3.mp4 # Video stream for Participant 3 (~58GB) โ”œโ”€โ”€ merged_P4.mp4 # Video stream for Participant 4 (~57GB) โ”œโ”€โ”€ merged_P5.mp4 # Video stream for Participant 5 (~38GB) โ”œโ”€โ”€ timeline_P1.json # Temporal annotations for Participant 1 โ”œโ”€โ”€ timeline_P2.json # Temporal annotations for Participant 2 โ”œโ”€โ”€ timeline_P3.json # Temporal annotations for Participant 3 โ”œโ”€โ”€ timeline_P4.json # Temporal annotations for Participant 4 โ””โ”€โ”€ timeline_P5.json # Temporal annotations for Participant 5 ``` ## Alternative Download Methods If you have difficulty accessing Hugging Face, you can also download the dataset from: **Baidu Netdisk (็™พๅบฆ็ฝ‘็›˜)** ``` Link: https://pan.baidu.com/s/1TSqfjqeaXdP2TWEpiy_3KA?pwd=7wmh ``` The Baidu Netdisk version contains the **uncompressed data files** (MP4 videos and JSON annotations) directly ## ๐Ÿงช Benchmark Tasks TeleEgo-QA evaluates models along **three main dimensions**: 1. **Memory** - Short-term / Long-term / Ultra-long Memory - Entity Tracking - Temporal Comparison & Interval 2. **Understanding** - Causal Understanding - Intent Inference - Multi-step Reasoning - Cross-modal Understanding 3. **Cross-Memory Reasoning** - Cross-temporal Causality - Cross-entity Relation - Temporal Chain Understanding Each QA instance includes: - Question type: Single-choice, Multi-choice, Binary, Open-ended ## ๐Ÿ“œ Citation If you find our **TeleEgo** in your research, please cite: ```bib @article{yan2025teleego, title={TeleEgo: Benchmarking Egocentric AI Assistants in the Wild}, author={Yan, Jiaqi and Ren, Ruilong and Liu, Jingren and Xu, Shuning and Wang, Ling and Wang, Yiheng and Wang, Yun and Zhang, Long and Chen, Xiangyu and Sun, Changzhi and others}, journal={arXiv preprint arXiv:2510.23981}, year={2025} } ``` ## ๐Ÿชช License This project is licensed under the **MIT License**. Dataset usage is restricted under a **research-only license**. --- ## ๐Ÿ“ฌ Contact If you have any questions, please feel free to reach out: chxy95@gmail.com. ---
โœจ TeleEgo is an Omni benchmark, a step toward building personalized AI assistants with true long-term memory, reasoning and decision-making in real-world wearable scenarios. โœจ