--- license: cc0-1.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* dataset_info: features: - name: sequence dtype: string - name: modified_sequence dtype: string - name: precursor_mz dtype: float64 - name: precursor_charge dtype: int64 - name: mz_array sequence: float64 - name: intensity_array sequence: float32 splits: - name: train num_bytes: 839098224 num_examples: 499402 - name: validation num_bytes: 49792990 num_examples: 28572 - name: test num_bytes: 300840334 num_examples: 111312 download_size: 1414788031 dataset_size: 1189731548 --- # Dataset Card for Nine-Species excluding Yeast Dataset used for the baseline comparison of InstaNovo to other models. ## Dataset Description - **Repository:** [InstaNovo](https://github.com/instadeepai/InstaNovo) - **Paper:** [InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale proteomics experiments](https://www.nature.com/articles/s42256-025-01019-5) ### Dataset Summary Dataset used in the original [DeepNovo](https://www.pnas.org/doi/full/10.1073/pnas.1705691114) paper. - The training set contains 8 species excluding yeast - The validation/test set contains the yeast species ## Dataset Structure The dataset is tabular, where each row corresponds to a labelled MS2 spectra. - `sequence (string)` \ The target peptide sequence excluding post-translational modifications - `modified_sequence (string)` \ The target peptide sequence including post-translational modifications - `precursor_mz (float64)` \ The mass-to-charge of the precursor (from MS1) - `charge (int64)` \ The charge of the precursor (from MS1) - `mz_array (list[float64])` \ The mass-to-charge values of the MS2 spectrum - `mz_array (list[float32])` \ The intensity values of the MS2 spectrum ## Citation Information If you use this dataset, please cite the original authors. The original data is available on [MASSIVE](https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) with the identifier `MSV000081382`. Please also cite InstaNovo: ```bibtex @article{eloff_kalogeropoulos_2025_instanovo, title = {InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale proteomics experiments}, author = {Eloff, Kevin and Kalogeropoulos, Konstantinos and Mabona, Amandla and Morell, Oliver and Catzel, Rachel and Rivera-de-Torre, Esperanza and Berg Jespersen, Jakob and Williams, Wesley and van Beljouw, Sam P. B. and Skwark, Marcin J. and Laustsen, Andreas Hougaard and Brouns, Stan J. J. and Ljungars, Anne and Schoof, Erwin M. and Van Goey, Jeroen and auf dem Keller, Ulrich and Beguir, Karim and Lopez Carranza, Nicolas and Jenkins, Timothy P.}, year = 2025, month = {Mar}, day = 31, journal = {Nature Machine Intelligence}, doi = {10.1038/s42256-025-01019-5}, issn = {2522-5839}, url = {https://doi.org/10.1038/s42256-025-01019-5} } ```