loading metadata as well
Browse files- merfish.py +29 -20
merfish.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import datasets
|
| 2 |
import os
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
|
| 5 |
class MERFISHConfig(datasets.BuilderConfig):
|
|
@@ -9,7 +10,7 @@ class MERFISHConfig(datasets.BuilderConfig):
|
|
| 9 |
class MERFISH(datasets.GeneratorBasedBuilder):
|
| 10 |
BUILDER_CONFIGS = [
|
| 11 |
MERFISHConfig(name="raw", description="Raw MERFISH data"),
|
| 12 |
-
MERFISHConfig(name="processed", description="Processed
|
| 13 |
]
|
| 14 |
|
| 15 |
def _info(self):
|
|
@@ -24,28 +25,36 @@ class MERFISH(datasets.GeneratorBasedBuilder):
|
|
| 24 |
)
|
| 25 |
|
| 26 |
def _split_generators(self, dl_manager):
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
return [
|
| 29 |
-
datasets.SplitGenerator(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
]
|
| 31 |
|
| 32 |
-
def _generate_examples(self,
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
# Load gene names from gene_metadata.parquet
|
| 37 |
-
gene_metadata = pd.read_parquet(gene_metadata_path)
|
| 38 |
-
gene_names = gene_metadata["gene_id"].tolist() if "gene_id" in gene_metadata.columns else gene_metadata.index.tolist()
|
| 39 |
|
| 40 |
idx = 0
|
| 41 |
-
for
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
idx += 1
|
| 51 |
|
|
|
|
| 1 |
import datasets
|
| 2 |
import os
|
| 3 |
+
import glob
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
class MERFISHConfig(datasets.BuilderConfig):
|
|
|
|
| 10 |
class MERFISH(datasets.GeneratorBasedBuilder):
|
| 11 |
BUILDER_CONFIGS = [
|
| 12 |
MERFISHConfig(name="raw", description="Raw MERFISH data"),
|
| 13 |
+
MERFISHConfig(name="processed", description="Processed MERFISH data"),
|
| 14 |
]
|
| 15 |
|
| 16 |
def _info(self):
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
def _split_generators(self, dl_manager):
|
| 28 |
+
data_files = {
|
| 29 |
+
"expression": os.path.join(self.config.name, "expression", "*.parquet"),
|
| 30 |
+
"gene_metadata": os.path.join(self.config.name, "gene_metadata.parquet"),
|
| 31 |
+
"cell_metadata": os.path.join(self.config.name, "cell_metadata.parquet"),
|
| 32 |
+
}
|
| 33 |
+
downloaded = dl_manager.download(data_files)
|
| 34 |
return [
|
| 35 |
+
datasets.SplitGenerator(
|
| 36 |
+
name=datasets.Split.TRAIN,
|
| 37 |
+
gen_kwargs={
|
| 38 |
+
"expression_files": sorted(glob.glob(downloaded["expression"])),
|
| 39 |
+
"gene_metadata_path": downloaded["gene_metadata"],
|
| 40 |
+
"cell_metadata_path": downloaded["cell_metadata"],
|
| 41 |
+
},
|
| 42 |
+
),
|
| 43 |
]
|
| 44 |
|
| 45 |
+
def _generate_examples(self, expression_files, gene_metadata_path, cell_metadata_path):
|
| 46 |
+
gene_df = pd.read_parquet(gene_metadata_path)
|
| 47 |
+
gene_names = gene_df["gene_id"].tolist() if "gene_id" in gene_df.columns else gene_df.index.tolist()
|
| 48 |
+
cell_df = pd.read_parquet(cell_metadata_path)
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
idx = 0
|
| 51 |
+
for filepath in expression_files:
|
| 52 |
+
df = pd.read_parquet(filepath)
|
| 53 |
+
for cell_id, row in df.iterrows():
|
| 54 |
+
yield idx, {
|
| 55 |
+
"cell_id": cell_id,
|
| 56 |
+
"expression": row.to_numpy(dtype="float32").tolist(),
|
| 57 |
+
"gene_names": gene_names,
|
| 58 |
+
}
|
| 59 |
+
idx += 1
|
|
|
|
| 60 |
|