import datasets import os import pandas as pd from huggingface_hub import list_repo_files import glob class MERFISHConfig(datasets.BuilderConfig): def __init__(self, **kwargs): self.gene_subset = kwargs.pop("gene_subset", None) super().__init__(**kwargs) class MERFISH(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ MERFISHConfig(name="raw", description="Raw MERFISH counts per gene"), MERFISHConfig(name="processed", description="Processed MERFISH data"), ] def _info(self): return datasets.DatasetInfo( description="MERFISH dataset of mouse brain slices", features=datasets.Features({ "cell_identifier": datasets.Value("string"), "expression": datasets.Sequence(datasets.Value("float32")), "gene_names": datasets.Sequence(datasets.Value("string")), }), supervised_keys=None, ) def _split_generators(self, dl_manager): expression_prefix = f"{self.config.name}/expression" repo_id = "data4science/merfish" if dl_manager.is_streaming: data_files = { "expression": os.path.join(self.config.name, "expression", "*.parquet"), "gene_metadata": os.path.join(self.config.name, "gene_metadata.parquet"), "cell_metadata": os.path.join(self.config.name, "cell_metadata.parquet"), } downloaded = dl_manager.download(data_files) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "expression_files": sorted(glob.glob(downloaded["expression"])), "gene_metadata_path": downloaded["gene_metadata"], "cell_metadata_path": downloaded["cell_metadata"], }, ), ] else: # List exact files from the Hub all_files = list_repo_files(repo_id, repo_type="dataset") expression_files = [ f for f in all_files if f.startswith(expression_prefix) and f.endswith(".parquet") ] expression_files = dl_manager.download(expression_files) gene_metadata = dl_manager.download(f"{self.config.name}/gene_metadata.parquet") cell_metadata = dl_manager.download(f"{self.config.name}/cell_metadata.parquet") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "expression_files": expression_files, "gene_metadata_path": gene_metadata, "cell_metadata_path": cell_metadata, "fs": dl_manager.fs if dl_manager.is_streaming else None, }, ), ] def _generate_examples(self, expression_files, gene_metadata_path, cell_metadata_path, fs=None): if fs is not None: gene_df = pd.read_parquet(fs.open(gene_metadata_path, "rb")) cell_df = pd.read_parquet(fs.open(cell_metadata_path, "rb")) else: gene_df = pd.read_parquet(gene_metadata_path) cell_df = pd.read_parquet(cell_metadata_path) gene_names = gene_df["gene_identifier"].tolist() if "gene_identifier" in gene_df.columns else gene_df.index.tolist() idx = 0 for filepath in expression_files: if fs is not None: with fs.open(filepath, "rb") as f: df = pd.read_parquet(f) else: df = pd.read_parquet(filepath) for idx_row, row in df.iterrows(): yield idx, { "cell_identifier": str(idx_row), "expression": row.to_numpy(dtype="float32").tolist(), "gene_names": gene_names, } idx += 1