Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
DOI:
License:
Renamed parquet files and updated readme.
Browse files
README.md
CHANGED
|
@@ -1,4 +1,12 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
dataset_info:
|
| 3 |
features:
|
| 4 |
- name: id
|
|
@@ -20,28 +28,179 @@ dataset_info:
|
|
| 20 |
'4': non_domain
|
| 21 |
splits:
|
| 22 |
- name: train
|
| 23 |
-
num_bytes:
|
| 24 |
num_examples: 4969
|
| 25 |
- name: test_ua
|
| 26 |
-
num_bytes:
|
| 27 |
num_examples: 540
|
| 28 |
- name: test_uq
|
| 29 |
-
num_bytes:
|
| 30 |
num_examples: 733
|
| 31 |
- name: test_ud
|
| 32 |
-
num_bytes:
|
| 33 |
num_examples: 4562
|
| 34 |
-
|
| 35 |
-
dataset_size: 4466195
|
| 36 |
configs:
|
| 37 |
- config_name: default
|
| 38 |
data_files:
|
| 39 |
- split: train
|
| 40 |
path: data/train-*
|
| 41 |
- split: test_ua
|
| 42 |
-
path: data/
|
| 43 |
- split: test_uq
|
| 44 |
-
path: data/
|
| 45 |
- split: test_ud
|
| 46 |
-
path: data/
|
| 47 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
pretty_name: SciEntsBank
|
| 3 |
+
license: cc-by-4.0
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
task_categories:
|
| 7 |
+
- text-classification
|
| 8 |
+
size_categories:
|
| 9 |
+
- 10K<n<100K
|
| 10 |
dataset_info:
|
| 11 |
features:
|
| 12 |
- name: id
|
|
|
|
| 28 |
'4': non_domain
|
| 29 |
splits:
|
| 30 |
- name: train
|
| 31 |
+
num_bytes: 232655
|
| 32 |
num_examples: 4969
|
| 33 |
- name: test_ua
|
| 34 |
+
num_bytes: 52730
|
| 35 |
num_examples: 540
|
| 36 |
- name: test_uq
|
| 37 |
+
num_bytes: 35716
|
| 38 |
num_examples: 733
|
| 39 |
- name: test_ud
|
| 40 |
+
num_bytes: 177307
|
| 41 |
num_examples: 4562
|
| 42 |
+
dataset_size: 498408
|
|
|
|
| 43 |
configs:
|
| 44 |
- config_name: default
|
| 45 |
data_files:
|
| 46 |
- split: train
|
| 47 |
path: data/train-*
|
| 48 |
- split: test_ua
|
| 49 |
+
path: data/test-ua-*
|
| 50 |
- split: test_uq
|
| 51 |
+
path: data/test-uq-*
|
| 52 |
- split: test_ud
|
| 53 |
+
path: data/test-ud-*
|
| 54 |
---
|
| 55 |
+
|
| 56 |
+
# Dataset Card for "SciEntsBank"
|
| 57 |
+
|
| 58 |
+
SciEntsBank is one of the two distinct subsets within the Student Response Analysis (SRA) corpus, the other subset being the
|
| 59 |
+
[Beetle](https://huggingface.co/datasets/nkazi/Beetle) dataset. Derived from student answers gathered by Nielsen et al. [1],
|
| 60 |
+
this dataset comprises nearly 11K responses to 197 assessment questions spanning 15 diverse science domains. The dataset
|
| 61 |
+
features three labeling schemes: (a) 5-way, (b) 3-way, and (c) 2-way. The dataset includes a training set and three distinct
|
| 62 |
+
test sets: (a) Unseen Answers (`test_ua`), (b) Unseen Questions (`test_uq`), and (c) Unseen Domains (`test_ud`).
|
| 63 |
+
|
| 64 |
+
- **Authors:** Myroslava Dzikovska, Rodney Nielsen, Chris Brew, Claudia Leacock, Danilo Giampiccolo, Luisa Bentivogli, Peter Clark, Ido Dagan, Hoa Trang Dang
|
| 65 |
+
- **Paper:** [SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge](https://aclanthology.org/S13-2045)
|
| 66 |
+
|
| 67 |
+
## Loading Dataset
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from datasets import load_dataset
|
| 71 |
+
dataset = load_dataset('nkazi/SciEntsBank')
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
## Labeling Schemes
|
| 75 |
+
|
| 76 |
+
The authors released the dataset with annotations using five labels (i.e., 5-way labeling scheme) for Automated Short-Answer Grading (ASAG).
|
| 77 |
+
Additionally, the authors have introduced two alternative labeling schemes, namely the 3-way and 2-way schemes, both derived from the 5-way
|
| 78 |
+
labeling scheme designed for Recognizing Textual Entailment (RTE). In the 3-way labeling scheme, the categories "partially correct but
|
| 79 |
+
incomplete", "irrelevant", and "non-domain" are consolidated into a unified category labeled as "incorrect". On the other hand, the 2-way
|
| 80 |
+
labeling scheme simplifies the classification into a binary system where all labels except "correct" are merged under the "incorrect" category.
|
| 81 |
+
|
| 82 |
+
The `label` column in this dataset presents the 5-way labels. For 3-way and 2-way labels, use the code provided below to derive it
|
| 83 |
+
from the 5-way labels. After converting the labels, please verify the label distribution. A code to print the label distribution is
|
| 84 |
+
also given below.
|
| 85 |
+
|
| 86 |
+
### 5-way to 3-way
|
| 87 |
+
|
| 88 |
+
```python
|
| 89 |
+
from datasets import ClassLabel
|
| 90 |
+
|
| 91 |
+
dataset = dataset.align_labels_with_mapping({'correct': 0, 'contradictory': 1, 'partially_correct_incomplete': 2, 'irrelevant': 2, 'non_domain': 2}, 'label')
|
| 92 |
+
dataset = dataset.cast_column('label', ClassLabel(names=['correct', 'contradictory', 'incorrect']))
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
Using `align_labels_with_mapping()`, we are mapping "partially correct but incomplete", "irrelevant", and "non-domain" to the same id. Subsequently,
|
| 96 |
+
we are using `cast_column()` to redefine the class labels (i.e., the label feature) where the id 2 corresponds to the "incorrect" label.
|
| 97 |
+
|
| 98 |
+
### 5-way to 2-way
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
+
from datasets import ClassLabel
|
| 102 |
+
|
| 103 |
+
dataset = dataset.align_labels_with_mapping({'correct': 0, 'contradictory': 1, 'partially_correct_incomplete': 1, 'irrelevant': 1, 'non_domain': 1}, 'label')
|
| 104 |
+
dataset = dataset.cast_column('label', ClassLabel(names=['correct', 'incorrect']))
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
In the above code, the label "correct" is mapped to 0 to maintain consistency with both the 5-way and 3-way labeling schemes. If the preference is to
|
| 108 |
+
represent "correct" with id 1 and "incorrect" with id 0, either adjust the label map accordingly or run the following to switch the ids:
|
| 109 |
+
|
| 110 |
+
```python
|
| 111 |
+
dataset = dataset.align_labels_with_mapping({'incorrect': 0, 'correct': 1}, 'label')
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### Saving and loading 3-way and 2-way datasets
|
| 115 |
+
|
| 116 |
+
Use the following code to store the dataset with the 3-way (or 2-way) labeling scheme locally to eliminate the need to convert labels each time the dataset is loaded:
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
dataset.save_to_disk('SciEntsBank_3way')
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
Here, `SciEntsBank_3way` depicts the path/directory where the dataset will be stored. Use the following code to load the dataset from the same local directory/path:
|
| 123 |
+
|
| 124 |
+
```python
|
| 125 |
+
from datasets import DatasetDict
|
| 126 |
+
dataset = DatasetDict.load_from_disk('SciEntsBank_3way')
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### Printing Label Distribution
|
| 130 |
+
|
| 131 |
+
Use the following code to print the label distribution:
|
| 132 |
+
|
| 133 |
+
```python
|
| 134 |
+
def print_label_dist(dataset):
|
| 135 |
+
for split_name in dataset:
|
| 136 |
+
print(split_name, ':')
|
| 137 |
+
num_examples = 0
|
| 138 |
+
for label in dataset[split_name].features['label'].names:
|
| 139 |
+
count = dataset[split_name]['label'].count(dataset[split_name].features['label'].str2int(label))
|
| 140 |
+
print(' ', label, ':', count)
|
| 141 |
+
num_examples += count
|
| 142 |
+
print(' total :', num_examples)
|
| 143 |
+
|
| 144 |
+
print_label_dist(dataset)
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
## Label Distribution
|
| 148 |
+
|
| 149 |
+
<style>
|
| 150 |
+
.label-dist th:not(:first-child), .label-dist td:not(:first-child) {
|
| 151 |
+
width: 15%;
|
| 152 |
+
}
|
| 153 |
+
</style>
|
| 154 |
+
|
| 155 |
+
<div class="label-dist">
|
| 156 |
+
|
| 157 |
+
### 5-way
|
| 158 |
+
|
| 159 |
+
Label | Train | Test UA | Test UQ | Test UD
|
| 160 |
+
--- | --: | --: | --: | --:
|
| 161 |
+
Correct | 2,008 | 233 | 301 | 1,917
|
| 162 |
+
Contradictory | 499 | 58 | 64 | 417
|
| 163 |
+
Partially correct but incomplete | 1,324 | 113 | 175 | 986
|
| 164 |
+
Irrelevant | 1,115 | 133 | 193 | 1,222
|
| 165 |
+
Non-domain | 23 | 3 | - | 20
|
| 166 |
+
Total | 4,969 | 540 | 733 | 4,562
|
| 167 |
+
|
| 168 |
+
### 3-way
|
| 169 |
+
|
| 170 |
+
Label | Train | Test UA | Test UQ | Test UD
|
| 171 |
+
--- | --: | --: | --: | --:
|
| 172 |
+
Correct | 2,008 | 233 | 301 | 1,917
|
| 173 |
+
Contradictory | 499 | 58 | 64 | 417
|
| 174 |
+
Incorrect | 2,462 | 249 | 368 | 2,228
|
| 175 |
+
Total | 4,969 | 540 | 733 | 4,562
|
| 176 |
+
|
| 177 |
+
### 2-way
|
| 178 |
+
|
| 179 |
+
Label | Train | Test UA | Test UQ | Test UD
|
| 180 |
+
--- | --: | --: | --: | --:
|
| 181 |
+
Correct | 2,008 | 233 | 301 | 1,917
|
| 182 |
+
Incorrect | 2,961 | 307 | 432 | 2,645
|
| 183 |
+
Total | 4,969 | 540 | 733 | 4,562
|
| 184 |
+
|
| 185 |
+
</div>
|
| 186 |
+
|
| 187 |
+
## Citation
|
| 188 |
+
|
| 189 |
+
```tex
|
| 190 |
+
@inproceedings{dzikovska2013semeval,
|
| 191 |
+
title = {{S}em{E}val-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge},
|
| 192 |
+
author = {Dzikovska, Myroslava and Nielsen, Rodney and Brew, Chris and Leacock, Claudia and Giampiccolo, Danilo and Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Dang, Hoa Trang},
|
| 193 |
+
year = 2013,
|
| 194 |
+
month = jun,
|
| 195 |
+
booktitle = {Second Joint Conference on Lexical and Computational Semantics ({SEM}), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation ({S}em{E}val 2013)},
|
| 196 |
+
editor = {Manandhar, Suresh and Yuret, Deniz}
|
| 197 |
+
publisher = {Association for Computational Linguistics},
|
| 198 |
+
address = {Atlanta, Georgia, USA},
|
| 199 |
+
pages = {263--274},
|
| 200 |
+
url = {https://aclanthology.org/S13-2045},
|
| 201 |
+
}
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
## References
|
| 205 |
+
1. Rodney D. Nielsen, Wayne Ward, James H. Martin, and Martha Palmer. 2008. Annotating students' understanding of science
|
| 206 |
+
concepts. In *Proceedings of the Sixth International Language Resources and Evaluation Conference*, Marrakech, Morocco.
|
data/{test_ua-00000-of-00001.parquet → test-ua-00001.parquet}
RENAMED
|
File without changes
|
data/{test_ud-00000-of-00001.parquet → test-ud-00001.parquet}
RENAMED
|
File without changes
|
data/{test_uq-00000-of-00001.parquet → test-uq-00001.parquet}
RENAMED
|
File without changes
|
data/{train-00000-of-00001.parquet → train-00001.parquet}
RENAMED
|
File without changes
|