flexthink
commited on
Commit
·
6c51980
1
Parent(s):
380887d
Add support for Gumbel encoding
Browse files- custom_interface.py +130 -2
custom_interface.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from speechbrain.inference.interfaces import Pretrained
|
| 3 |
|
|
|
|
| 4 |
class AttentionMLP(torch.nn.Module):
|
| 5 |
def __init__(self, input_dim, hidden_dim):
|
| 6 |
super(AttentionMLP, self).__init__()
|
|
@@ -32,8 +34,11 @@ class Discrete_EmbeddingLayer(torch.nn.Module):
|
|
| 32 |
init: boolean (default: False):
|
| 33 |
If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
|
| 34 |
freeze: boolean (default: False)
|
| 35 |
-
|
| 36 |
alongside with the rest of the pipeline.
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
Example
|
| 39 |
-------
|
|
@@ -62,6 +67,7 @@ class Discrete_EmbeddingLayer(torch.nn.Module):
|
|
| 62 |
freeze=False,
|
| 63 |
available_layers=None,
|
| 64 |
layers=None,
|
|
|
|
| 65 |
):
|
| 66 |
super(Discrete_EmbeddingLayer, self).__init__()
|
| 67 |
self.vocab_size = vocab_size
|
|
@@ -74,6 +80,8 @@ class Discrete_EmbeddingLayer(torch.nn.Module):
|
|
| 74 |
self.layers = layers
|
| 75 |
self.available_layers = available_layers
|
| 76 |
self.offsets = self.build_offsets()
|
|
|
|
|
|
|
| 77 |
|
| 78 |
def init_embedding(self, weights):
|
| 79 |
with torch.no_grad():
|
|
@@ -111,6 +119,77 @@ class Discrete_EmbeddingLayer(torch.nn.Module):
|
|
| 111 |
in_embs = self.embedding(in_tokens_offset.int())
|
| 112 |
return in_embs
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
class DiscreteSpkEmb(Pretrained):
|
| 116 |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
|
@@ -168,5 +247,54 @@ class DiscreteSpkEmb(Pretrained):
|
|
| 168 |
embeddings = self.mods.embedding_model(feats, length)
|
| 169 |
return embeddings.squeeze(1)
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
def forward(self, audio, length=None):
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import math
|
| 3 |
from speechbrain.inference.interfaces import Pretrained
|
| 4 |
|
| 5 |
+
|
| 6 |
class AttentionMLP(torch.nn.Module):
|
| 7 |
def __init__(self, input_dim, hidden_dim):
|
| 8 |
super(AttentionMLP, self).__init__()
|
|
|
|
| 34 |
init: boolean (default: False):
|
| 35 |
If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
|
| 36 |
freeze: boolean (default: False)
|
| 37 |
+
If True, the embedding is frozen. If False, the model will be trained
|
| 38 |
alongside with the rest of the pipeline.
|
| 39 |
+
chunk_size: int
|
| 40 |
+
The size of lengthwize chunks use when evaluating via
|
| 41 |
+
Gumbel softmax
|
| 42 |
|
| 43 |
Example
|
| 44 |
-------
|
|
|
|
| 67 |
freeze=False,
|
| 68 |
available_layers=None,
|
| 69 |
layers=None,
|
| 70 |
+
chunk_size=100,
|
| 71 |
):
|
| 72 |
super(Discrete_EmbeddingLayer, self).__init__()
|
| 73 |
self.vocab_size = vocab_size
|
|
|
|
| 80 |
self.layers = layers
|
| 81 |
self.available_layers = available_layers
|
| 82 |
self.offsets = self.build_offsets()
|
| 83 |
+
self.layer_embs = self.compute_layer_embs()
|
| 84 |
+
self.chunk_size = chunk_size
|
| 85 |
|
| 86 |
def init_embedding(self, weights):
|
| 87 |
with torch.no_grad():
|
|
|
|
| 119 |
in_embs = self.embedding(in_tokens_offset.int())
|
| 120 |
return in_embs
|
| 121 |
|
| 122 |
+
def compute_layer_embs(self):
|
| 123 |
+
weight = self.embedding.weight
|
| 124 |
+
|
| 125 |
+
# Compute offsets
|
| 126 |
+
layer_idx_map = {
|
| 127 |
+
layer: idx
|
| 128 |
+
for idx, layer in enumerate(self.available_layers)
|
| 129 |
+
}
|
| 130 |
+
layer_idx = [
|
| 131 |
+
layer_idx_map[layer]
|
| 132 |
+
for layer in self.layers
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
offsets = [
|
| 136 |
+
idx * self.vocab_size
|
| 137 |
+
for idx in layer_idx
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
layer_embs = torch.stack([
|
| 141 |
+
weight[offset:offset + self.vocab_size]
|
| 142 |
+
for offset in offsets
|
| 143 |
+
])
|
| 144 |
+
|
| 145 |
+
# To (Batch x Length x Emb)
|
| 146 |
+
layer_embs = layer_embs.unsqueeze(0).unsqueeze(0)
|
| 147 |
+
return layer_embs
|
| 148 |
+
|
| 149 |
+
def encode_logits(self, logits, length=None):
|
| 150 |
+
"""Computes waveforms from a batch of discrete units
|
| 151 |
+
Arguments
|
| 152 |
+
---------
|
| 153 |
+
units: torch.tensor
|
| 154 |
+
Batch of discrete unit logits [batch, length, head, token]
|
| 155 |
+
or tokens [batch, length, head]
|
| 156 |
+
spk: torch.tensor
|
| 157 |
+
Batch of speaker embeddings [batch, spk_dim]
|
| 158 |
+
Returns
|
| 159 |
+
-------
|
| 160 |
+
waveforms: torch.tensor
|
| 161 |
+
Batch of mel-waveforms [batch, 1, time]
|
| 162 |
+
"""
|
| 163 |
+
|
| 164 |
+
# Convert logits to one-hot representations
|
| 165 |
+
# without losing the gradient
|
| 166 |
+
units_gumbel = torch.nn.functional.gumbel_softmax(
|
| 167 |
+
logits,
|
| 168 |
+
hard=False,
|
| 169 |
+
dim=-1
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Straight-through trick
|
| 173 |
+
_, argmax_idx = logits.max(dim=-1, keepdim=True)
|
| 174 |
+
units_ref = torch.zeros_like(logits).scatter_(
|
| 175 |
+
dim=-1, index=argmax_idx, src=torch.ones_like(logits)
|
| 176 |
+
)
|
| 177 |
+
units_hard = units_ref - units_gumbel.detach() + units_gumbel
|
| 178 |
+
|
| 179 |
+
# Sum over embeddings for each layer
|
| 180 |
+
units_hard_chunked = units_hard.chunk(
|
| 181 |
+
math.ceil(units_hard.size(1) / self.chunk_size),
|
| 182 |
+
dim=1
|
| 183 |
+
)
|
| 184 |
+
emb = torch.cat(
|
| 185 |
+
[
|
| 186 |
+
(self.layer_embs * units_hard_chunk.unsqueeze(-1)).sum(-2)
|
| 187 |
+
for units_hard_chunk in units_hard_chunked
|
| 188 |
+
],
|
| 189 |
+
dim=1
|
| 190 |
+
)
|
| 191 |
+
return emb
|
| 192 |
+
|
| 193 |
|
| 194 |
class DiscreteSpkEmb(Pretrained):
|
| 195 |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
|
|
|
| 247 |
embeddings = self.mods.embedding_model(feats, length)
|
| 248 |
return embeddings.squeeze(1)
|
| 249 |
|
| 250 |
+
def encode_logits(self, logits, length=None):
|
| 251 |
+
"""Encodes the input audio logits into a single vector embedding.
|
| 252 |
+
|
| 253 |
+
Arguments
|
| 254 |
+
---------
|
| 255 |
+
audio : torch.tensor
|
| 256 |
+
Batch of tokenized audio [batch, time, heads]
|
| 257 |
+
length : torch.tensor
|
| 258 |
+
Lengths of the waveforms relative to the longest one in the
|
| 259 |
+
batch, tensor of shape [batch]. The longest one should have
|
| 260 |
+
relative length 1.0 and others len(waveform) / max_length.
|
| 261 |
+
Used for ignoring padding.
|
| 262 |
+
|
| 263 |
+
Returns
|
| 264 |
+
-------
|
| 265 |
+
torch.tensor
|
| 266 |
+
The encoded batch
|
| 267 |
+
"""
|
| 268 |
+
embeddings = self.mods.discrete_embedding_layer.encode_logits(logits)
|
| 269 |
+
att_w = self.mods.attention_mlp(embeddings)
|
| 270 |
+
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
|
| 271 |
+
embeddings = self.mods.embedding_model(feats, length)
|
| 272 |
+
return embeddings.squeeze(1)
|
| 273 |
+
|
| 274 |
def forward(self, audio, length=None):
|
| 275 |
+
"""Encodes the input audio into a single vector embedding.
|
| 276 |
+
The waveforms should already be in the model's desired format.
|
| 277 |
+
Arguments
|
| 278 |
+
---------
|
| 279 |
+
audio : torch.tensor
|
| 280 |
+
Batch of tokenized audio [batch, time, heads]
|
| 281 |
+
or logits [batch, time, heads, tokens]
|
| 282 |
+
length : torch.tensor
|
| 283 |
+
Lengths of the waveforms relative to the longest one in the
|
| 284 |
+
batch, tensor of shape [batch]. The longest one should have
|
| 285 |
+
relative length 1.0 and others len(waveform) / max_length.
|
| 286 |
+
Used for ignoring padding.
|
| 287 |
+
|
| 288 |
+
Returns
|
| 289 |
+
-------
|
| 290 |
+
torch.tensor
|
| 291 |
+
The encoded batch
|
| 292 |
+
"""
|
| 293 |
+
audio_dim = audio.dim()
|
| 294 |
+
if audio_dim == 3:
|
| 295 |
+
embeddings = self.encode_batch(audio, length)
|
| 296 |
+
elif audio_dim == 4:
|
| 297 |
+
embeddings = self.encode_logits(audio, length)
|
| 298 |
+
else:
|
| 299 |
+
raise ValueError("Unsupported audio shape {audio.shape}")
|
| 300 |
+
return embeddings
|