Update inference/inference.py
Browse files- inference/inference.py +335 -335
inference/inference.py
CHANGED
|
@@ -1,335 +1,335 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn.functional as F
|
| 3 |
-
import os
|
| 4 |
-
import torch.quantization
|
| 5 |
-
from .model import (
|
| 6 |
-
DiffTransformerLLM,
|
| 7 |
-
ByteTokenizer,
|
| 8 |
-
IM_START_TOKEN,
|
| 9 |
-
IM_END_TOKEN,
|
| 10 |
-
PAD_TOKEN,
|
| 11 |
-
)
|
| 12 |
-
|
| 13 |
-
force_CPU = False
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def list_checkpoints(checkpoint_dir="checkpoints"):
|
| 17 |
-
"""List all available checkpoints in the directory."""
|
| 18 |
-
if not os.path.exists(checkpoint_dir):
|
| 19 |
-
print(f"Checkpoint directory {checkpoint_dir} not found.")
|
| 20 |
-
return []
|
| 21 |
-
|
| 22 |
-
checkpoints = [f for f in os.listdir(checkpoint_dir) if f.endswith(".pt")]
|
| 23 |
-
return sorted(checkpoints)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def load_model(checkpoint_path, device=None, fp16=True):
|
| 27 |
-
"""Load a trained model from a checkpoint, applying optimizations as needed."""
|
| 28 |
-
import torch
|
| 29 |
-
|
| 30 |
-
if device is None:
|
| 31 |
-
if torch.backends.mps.is_available() and not force_CPU:
|
| 32 |
-
device = torch.device("mps")
|
| 33 |
-
else:
|
| 34 |
-
device = torch.device(
|
| 35 |
-
"cuda" if torch.cuda.is_available() and not force_CPU else "cpu"
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
print(f"Loading checkpoint from {checkpoint_path}")
|
| 39 |
-
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 40 |
-
|
| 41 |
-
# Hyperparams
|
| 42 |
-
vocab_size = 259 # 256 bytes + 3 special tokens
|
| 43 |
-
embed_dim = 768
|
| 44 |
-
num_layers = 28
|
| 45 |
-
num_heads = 12
|
| 46 |
-
ffn_hidden_dim = embed_dim * 4
|
| 47 |
-
max_seq_len =
|
| 48 |
-
dropout = 0.1 # For inference you can set dropout=0
|
| 49 |
-
|
| 50 |
-
# Model
|
| 51 |
-
model = DiffTransformerLLM(
|
| 52 |
-
vocab_size=vocab_size,
|
| 53 |
-
embed_dim=embed_dim,
|
| 54 |
-
num_layers=num_layers,
|
| 55 |
-
num_heads=num_heads,
|
| 56 |
-
ffn_hidden_dim=ffn_hidden_dim,
|
| 57 |
-
max_seq_len=max_seq_len,
|
| 58 |
-
dropout=dropout,
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
# The checkpoint is the state dict itself
|
| 62 |
-
state_dict = checkpoint
|
| 63 |
-
|
| 64 |
-
# Load the state dict into the float32 model first
|
| 65 |
-
model.load_state_dict(state_dict)
|
| 66 |
-
model.eval()
|
| 67 |
-
|
| 68 |
-
# Apply device-specific optimizations
|
| 69 |
-
if device.type == "cpu":
|
| 70 |
-
print("Optimizing for CPU with dynamic quantization (int8).")
|
| 71 |
-
# Set the quantization engine
|
| 72 |
-
torch.backends.quantized.engine = "qnnpack"
|
| 73 |
-
# Quantize the linear layers to int8 for performance
|
| 74 |
-
model = torch.quantization.quantize_dynamic(
|
| 75 |
-
model, {torch.nn.Linear}, dtype=torch.qint8
|
| 76 |
-
)
|
| 77 |
-
elif device.type == "cuda" and fp16:
|
| 78 |
-
print("Casting model to fp16 for CUDA.")
|
| 79 |
-
model = model.half()
|
| 80 |
-
elif device.type == "mps":
|
| 81 |
-
print("Optimizing for MPS.")
|
| 82 |
-
|
| 83 |
-
model = model.to(device)
|
| 84 |
-
|
| 85 |
-
print("Model loaded successfully.")
|
| 86 |
-
return model
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
def generate_text_stream(
|
| 90 |
-
model,
|
| 91 |
-
tokenizer,
|
| 92 |
-
prompt,
|
| 93 |
-
max_new_tokens=100,
|
| 94 |
-
temperature=1.0,
|
| 95 |
-
top_k=0,
|
| 96 |
-
repetition_penalty=1.0,
|
| 97 |
-
device=None,
|
| 98 |
-
stop_sequences=[],
|
| 99 |
-
):
|
| 100 |
-
"""
|
| 101 |
-
Generate text from a prompt using the trained model, yielding decoded strings in a stream.
|
| 102 |
-
This function is a generator.
|
| 103 |
-
"""
|
| 104 |
-
if device is None:
|
| 105 |
-
if torch.backends.mps.is_available() and not force_CPU:
|
| 106 |
-
device = torch.device("mps")
|
| 107 |
-
else:
|
| 108 |
-
device = torch.device(
|
| 109 |
-
"cuda" if torch.cuda.is_available() and not force_CPU else "cpu"
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
prompt_bytes = prompt.encode("utf-8", errors="replace")
|
| 113 |
-
input_ids = (
|
| 114 |
-
torch.tensor(
|
| 115 |
-
tokenizer.encode(prompt_bytes, add_special_tokens=False), dtype=torch.long
|
| 116 |
-
)
|
| 117 |
-
.unsqueeze(0)
|
| 118 |
-
.to(device)
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
stop_sequences_ids = [
|
| 122 |
-
tokenizer.encode(seq.encode("utf-8", errors="replace"), add_special_tokens=False)
|
| 123 |
-
for seq in stop_sequences
|
| 124 |
-
]
|
| 125 |
-
|
| 126 |
-
generated_ids = input_ids.clone()
|
| 127 |
-
byte_buffer = b""
|
| 128 |
-
|
| 129 |
-
model.eval()
|
| 130 |
-
|
| 131 |
-
with torch.no_grad():
|
| 132 |
-
for _ in range(max_new_tokens):
|
| 133 |
-
if generated_ids.size(1) > model.max_seq_len:
|
| 134 |
-
current_input_ids = generated_ids[:, -model.max_seq_len :]
|
| 135 |
-
else:
|
| 136 |
-
current_input_ids = generated_ids
|
| 137 |
-
|
| 138 |
-
logits = model(current_input_ids)
|
| 139 |
-
next_token_logits = logits[:, -1, :].squeeze(0)
|
| 140 |
-
|
| 141 |
-
if temperature > 0:
|
| 142 |
-
next_token_logits = next_token_logits / temperature
|
| 143 |
-
|
| 144 |
-
if repetition_penalty > 1.0:
|
| 145 |
-
seen_tokens = set(generated_ids[0].tolist())
|
| 146 |
-
for token_id in seen_tokens:
|
| 147 |
-
next_token_logits[token_id] /= repetition_penalty
|
| 148 |
-
|
| 149 |
-
if top_k > 0:
|
| 150 |
-
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k)
|
| 151 |
-
filtered_logits = torch.full_like(next_token_logits, float("-inf"))
|
| 152 |
-
filtered_logits.scatter_(0, top_k_indices, top_k_logits)
|
| 153 |
-
next_token_logits = filtered_logits
|
| 154 |
-
|
| 155 |
-
probs = F.softmax(next_token_logits, dim=0)
|
| 156 |
-
next_token = torch.multinomial(probs, 1)
|
| 157 |
-
|
| 158 |
-
# Decode the token and handle the byte buffer FIRST.
|
| 159 |
-
token_byte = tokenizer.decode([next_token.item()])
|
| 160 |
-
byte_buffer += token_byte
|
| 161 |
-
|
| 162 |
-
try:
|
| 163 |
-
decoded_str = byte_buffer.decode("utf-8")
|
| 164 |
-
yield decoded_str
|
| 165 |
-
byte_buffer = b""
|
| 166 |
-
except UnicodeDecodeError:
|
| 167 |
-
# Incomplete character, continue to accumulate bytes.
|
| 168 |
-
pass
|
| 169 |
-
|
| 170 |
-
# THEN, update the generated IDs and check for a stop sequence.
|
| 171 |
-
generated_ids = torch.cat([generated_ids, next_token.unsqueeze(0)], dim=1)
|
| 172 |
-
|
| 173 |
-
stop_generation = False
|
| 174 |
-
current_sequence_list = generated_ids.tolist()[0]
|
| 175 |
-
for stop_seq_ids in stop_sequences_ids:
|
| 176 |
-
if len(current_sequence_list) >= len(stop_seq_ids):
|
| 177 |
-
if current_sequence_list[-len(stop_seq_ids) :] == stop_seq_ids:
|
| 178 |
-
stop_generation = True
|
| 179 |
-
break
|
| 180 |
-
if stop_generation:
|
| 181 |
-
break
|
| 182 |
-
|
| 183 |
-
# If there's anything left in the buffer, decode it with replacement for errors.
|
| 184 |
-
if byte_buffer:
|
| 185 |
-
yield byte_buffer.decode("utf-8", errors="replace")
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
def generate_text(
|
| 189 |
-
model,
|
| 190 |
-
tokenizer,
|
| 191 |
-
prompt,
|
| 192 |
-
max_new_tokens=100,
|
| 193 |
-
temperature=1.0,
|
| 194 |
-
top_k=0,
|
| 195 |
-
repetition_penalty=1.0,
|
| 196 |
-
device=None,
|
| 197 |
-
stop_sequences=[],
|
| 198 |
-
):
|
| 199 |
-
"""
|
| 200 |
-
Generate text from a prompt using the trained model.
|
| 201 |
-
This is a convenience wrapper around generate_text_stream.
|
| 202 |
-
"""
|
| 203 |
-
generated_text = "".join(
|
| 204 |
-
generate_text_stream(
|
| 205 |
-
model=model,
|
| 206 |
-
tokenizer=tokenizer,
|
| 207 |
-
prompt=prompt,
|
| 208 |
-
max_new_tokens=max_new_tokens,
|
| 209 |
-
temperature=temperature,
|
| 210 |
-
top_k=top_k,
|
| 211 |
-
repetition_penalty=repetition_penalty,
|
| 212 |
-
device=device,
|
| 213 |
-
stop_sequences=stop_sequences,
|
| 214 |
-
)
|
| 215 |
-
)
|
| 216 |
-
full_text = prompt + generated_text
|
| 217 |
-
return generated_text, full_text
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
def main():
|
| 221 |
-
parser = argparse.ArgumentParser(
|
| 222 |
-
description="Text generation with DiffAttention LLM"
|
| 223 |
-
)
|
| 224 |
-
parser.add_argument("--checkpoint", type=str, help="Path to the checkpoint file")
|
| 225 |
-
parser.add_argument(
|
| 226 |
-
"--prompt",
|
| 227 |
-
type=str,
|
| 228 |
-
default="""\nHow many 'b's are in "barber"? \n""",
|
| 229 |
-
)
|
| 230 |
-
parser.add_argument(
|
| 231 |
-
"--max_tokens",
|
| 232 |
-
type=int,
|
| 233 |
-
default=500,
|
| 234 |
-
help="Maximum number of tokens to generate",
|
| 235 |
-
)
|
| 236 |
-
parser.add_argument(
|
| 237 |
-
"--temperature", type=float, default=0.7, help="Sampling temperature"
|
| 238 |
-
)
|
| 239 |
-
parser.add_argument(
|
| 240 |
-
"--top_k", type=int, default=10, help="Top-k sampling parameter (0 to disable)"
|
| 241 |
-
)
|
| 242 |
-
parser.add_argument(
|
| 243 |
-
"--top_p",
|
| 244 |
-
type=float,
|
| 245 |
-
default=0.9,
|
| 246 |
-
help="Top-p (nucleus) sampling parameter (0 to disable)",
|
| 247 |
-
)
|
| 248 |
-
parser.add_argument(
|
| 249 |
-
"--repetition_penalty",
|
| 250 |
-
type=float,
|
| 251 |
-
default=1.2,
|
| 252 |
-
help="Repetition penalty (1.0 for no penalty)",
|
| 253 |
-
)
|
| 254 |
-
parser.add_argument(
|
| 255 |
-
"--list_checkpoints",
|
| 256 |
-
action="store_true",
|
| 257 |
-
help="List available checkpoints and exit",
|
| 258 |
-
)
|
| 259 |
-
args = parser.parse_args()
|
| 260 |
-
|
| 261 |
-
# List checkpoints if requested
|
| 262 |
-
if args.list_checkpoints:
|
| 263 |
-
print("Available checkpoints:")
|
| 264 |
-
checkpoints = list_checkpoints()
|
| 265 |
-
for i, ckpt in enumerate(checkpoints):
|
| 266 |
-
print(f"{i+1}. {ckpt}")
|
| 267 |
-
return
|
| 268 |
-
|
| 269 |
-
# If no checkpoint specified, use the latest one
|
| 270 |
-
if not args.checkpoint:
|
| 271 |
-
checkpoints = list_checkpoints()
|
| 272 |
-
if not checkpoints:
|
| 273 |
-
print("No checkpoints found. Please train the model first.")
|
| 274 |
-
return
|
| 275 |
-
|
| 276 |
-
# Find the latest epoch_end checkpoint
|
| 277 |
-
end_checkpoints = [ckpt for ckpt in checkpoints if "end.pt" in ckpt]
|
| 278 |
-
if end_checkpoints:
|
| 279 |
-
latest_checkpoint = max(end_checkpoints)
|
| 280 |
-
else:
|
| 281 |
-
latest_checkpoint = max(checkpoints)
|
| 282 |
-
|
| 283 |
-
checkpoint_path = os.path.join("checkpoints", latest_checkpoint)
|
| 284 |
-
else:
|
| 285 |
-
checkpoint_path = args.checkpoint
|
| 286 |
-
|
| 287 |
-
# Set device
|
| 288 |
-
if torch.backends.mps.is_available() and not force_CPU:
|
| 289 |
-
device = torch.device("mps")
|
| 290 |
-
else:
|
| 291 |
-
device = torch.device(
|
| 292 |
-
"cuda" if torch.cuda.is_available() and not force_CPU else "cpu"
|
| 293 |
-
)
|
| 294 |
-
print(f"Using device: {device}")
|
| 295 |
-
|
| 296 |
-
# Initialize tokenizer
|
| 297 |
-
tokenizer = ByteTokenizer()
|
| 298 |
-
|
| 299 |
-
# Load model
|
| 300 |
-
model = load_model(checkpoint_path, device)
|
| 301 |
-
|
| 302 |
-
# Generate text
|
| 303 |
-
print(f"\nGenerating text with prompt: '{args.prompt}'")
|
| 304 |
-
print(
|
| 305 |
-
f"Parameters: temperature={args.temperature}, top_k={args.top_k}, top_p={args.top_p}, repetition_penalty={args.repetition_penalty}"
|
| 306 |
-
)
|
| 307 |
-
print("\nGenerating...")
|
| 308 |
-
|
| 309 |
-
generated_text, full_text = generate_text(
|
| 310 |
-
model=model,
|
| 311 |
-
tokenizer=tokenizer,
|
| 312 |
-
prompt=args.prompt,
|
| 313 |
-
max_new_tokens=args.max_tokens,
|
| 314 |
-
temperature=args.temperature,
|
| 315 |
-
top_k=args.top_k,
|
| 316 |
-
top_p=args.top_p,
|
| 317 |
-
repetition_penalty=args.repetition_penalty,
|
| 318 |
-
device=device,
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
print("\n\nGenerated completion only:")
|
| 322 |
-
print("-" * 40)
|
| 323 |
-
print(generated_text)
|
| 324 |
-
print("-" * 40)
|
| 325 |
-
|
| 326 |
-
print("\nFull generated text (prompt + completion):")
|
| 327 |
-
print("-" * 40)
|
| 328 |
-
print(full_text)
|
| 329 |
-
print("-" * 40)
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
if __name__ == "__main__":
|
| 333 |
-
import argparse
|
| 334 |
-
|
| 335 |
-
main()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import os
|
| 4 |
+
import torch.quantization
|
| 5 |
+
from .model import (
|
| 6 |
+
DiffTransformerLLM,
|
| 7 |
+
ByteTokenizer,
|
| 8 |
+
IM_START_TOKEN,
|
| 9 |
+
IM_END_TOKEN,
|
| 10 |
+
PAD_TOKEN,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
force_CPU = False
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def list_checkpoints(checkpoint_dir="checkpoints"):
|
| 17 |
+
"""List all available checkpoints in the directory."""
|
| 18 |
+
if not os.path.exists(checkpoint_dir):
|
| 19 |
+
print(f"Checkpoint directory {checkpoint_dir} not found.")
|
| 20 |
+
return []
|
| 21 |
+
|
| 22 |
+
checkpoints = [f for f in os.listdir(checkpoint_dir) if f.endswith(".pt")]
|
| 23 |
+
return sorted(checkpoints)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_model(checkpoint_path, device=None, fp16=True):
|
| 27 |
+
"""Load a trained model from a checkpoint, applying optimizations as needed."""
|
| 28 |
+
import torch
|
| 29 |
+
|
| 30 |
+
if device is None:
|
| 31 |
+
if torch.backends.mps.is_available() and not force_CPU:
|
| 32 |
+
device = torch.device("mps")
|
| 33 |
+
else:
|
| 34 |
+
device = torch.device(
|
| 35 |
+
"cuda" if torch.cuda.is_available() and not force_CPU else "cpu"
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
print(f"Loading checkpoint from {checkpoint_path}")
|
| 39 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 40 |
+
|
| 41 |
+
# Hyperparams
|
| 42 |
+
vocab_size = 259 # 256 bytes + 3 special tokens
|
| 43 |
+
embed_dim = 768
|
| 44 |
+
num_layers = 28
|
| 45 |
+
num_heads = 12
|
| 46 |
+
ffn_hidden_dim = embed_dim * 4
|
| 47 |
+
max_seq_len = 2048
|
| 48 |
+
dropout = 0.1 # For inference you can set dropout=0
|
| 49 |
+
|
| 50 |
+
# Model
|
| 51 |
+
model = DiffTransformerLLM(
|
| 52 |
+
vocab_size=vocab_size,
|
| 53 |
+
embed_dim=embed_dim,
|
| 54 |
+
num_layers=num_layers,
|
| 55 |
+
num_heads=num_heads,
|
| 56 |
+
ffn_hidden_dim=ffn_hidden_dim,
|
| 57 |
+
max_seq_len=max_seq_len,
|
| 58 |
+
dropout=dropout,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# The checkpoint is the state dict itself
|
| 62 |
+
state_dict = checkpoint
|
| 63 |
+
|
| 64 |
+
# Load the state dict into the float32 model first
|
| 65 |
+
model.load_state_dict(state_dict)
|
| 66 |
+
model.eval()
|
| 67 |
+
|
| 68 |
+
# Apply device-specific optimizations
|
| 69 |
+
if device.type == "cpu":
|
| 70 |
+
print("Optimizing for CPU with dynamic quantization (int8).")
|
| 71 |
+
# Set the quantization engine
|
| 72 |
+
torch.backends.quantized.engine = "qnnpack"
|
| 73 |
+
# Quantize the linear layers to int8 for performance
|
| 74 |
+
model = torch.quantization.quantize_dynamic(
|
| 75 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
| 76 |
+
)
|
| 77 |
+
elif device.type == "cuda" and fp16:
|
| 78 |
+
print("Casting model to fp16 for CUDA.")
|
| 79 |
+
model = model.half()
|
| 80 |
+
elif device.type == "mps":
|
| 81 |
+
print("Optimizing for MPS.")
|
| 82 |
+
|
| 83 |
+
model = model.to(device)
|
| 84 |
+
|
| 85 |
+
print("Model loaded successfully.")
|
| 86 |
+
return model
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def generate_text_stream(
|
| 90 |
+
model,
|
| 91 |
+
tokenizer,
|
| 92 |
+
prompt,
|
| 93 |
+
max_new_tokens=100,
|
| 94 |
+
temperature=1.0,
|
| 95 |
+
top_k=0,
|
| 96 |
+
repetition_penalty=1.0,
|
| 97 |
+
device=None,
|
| 98 |
+
stop_sequences=[],
|
| 99 |
+
):
|
| 100 |
+
"""
|
| 101 |
+
Generate text from a prompt using the trained model, yielding decoded strings in a stream.
|
| 102 |
+
This function is a generator.
|
| 103 |
+
"""
|
| 104 |
+
if device is None:
|
| 105 |
+
if torch.backends.mps.is_available() and not force_CPU:
|
| 106 |
+
device = torch.device("mps")
|
| 107 |
+
else:
|
| 108 |
+
device = torch.device(
|
| 109 |
+
"cuda" if torch.cuda.is_available() and not force_CPU else "cpu"
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
prompt_bytes = prompt.encode("utf-8", errors="replace")
|
| 113 |
+
input_ids = (
|
| 114 |
+
torch.tensor(
|
| 115 |
+
tokenizer.encode(prompt_bytes, add_special_tokens=False), dtype=torch.long
|
| 116 |
+
)
|
| 117 |
+
.unsqueeze(0)
|
| 118 |
+
.to(device)
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
stop_sequences_ids = [
|
| 122 |
+
tokenizer.encode(seq.encode("utf-8", errors="replace"), add_special_tokens=False)
|
| 123 |
+
for seq in stop_sequences
|
| 124 |
+
]
|
| 125 |
+
|
| 126 |
+
generated_ids = input_ids.clone()
|
| 127 |
+
byte_buffer = b""
|
| 128 |
+
|
| 129 |
+
model.eval()
|
| 130 |
+
|
| 131 |
+
with torch.no_grad():
|
| 132 |
+
for _ in range(max_new_tokens):
|
| 133 |
+
if generated_ids.size(1) > model.max_seq_len:
|
| 134 |
+
current_input_ids = generated_ids[:, -model.max_seq_len :]
|
| 135 |
+
else:
|
| 136 |
+
current_input_ids = generated_ids
|
| 137 |
+
|
| 138 |
+
logits = model(current_input_ids)
|
| 139 |
+
next_token_logits = logits[:, -1, :].squeeze(0)
|
| 140 |
+
|
| 141 |
+
if temperature > 0:
|
| 142 |
+
next_token_logits = next_token_logits / temperature
|
| 143 |
+
|
| 144 |
+
if repetition_penalty > 1.0:
|
| 145 |
+
seen_tokens = set(generated_ids[0].tolist())
|
| 146 |
+
for token_id in seen_tokens:
|
| 147 |
+
next_token_logits[token_id] /= repetition_penalty
|
| 148 |
+
|
| 149 |
+
if top_k > 0:
|
| 150 |
+
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k)
|
| 151 |
+
filtered_logits = torch.full_like(next_token_logits, float("-inf"))
|
| 152 |
+
filtered_logits.scatter_(0, top_k_indices, top_k_logits)
|
| 153 |
+
next_token_logits = filtered_logits
|
| 154 |
+
|
| 155 |
+
probs = F.softmax(next_token_logits, dim=0)
|
| 156 |
+
next_token = torch.multinomial(probs, 1)
|
| 157 |
+
|
| 158 |
+
# Decode the token and handle the byte buffer FIRST.
|
| 159 |
+
token_byte = tokenizer.decode([next_token.item()])
|
| 160 |
+
byte_buffer += token_byte
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
decoded_str = byte_buffer.decode("utf-8")
|
| 164 |
+
yield decoded_str
|
| 165 |
+
byte_buffer = b""
|
| 166 |
+
except UnicodeDecodeError:
|
| 167 |
+
# Incomplete character, continue to accumulate bytes.
|
| 168 |
+
pass
|
| 169 |
+
|
| 170 |
+
# THEN, update the generated IDs and check for a stop sequence.
|
| 171 |
+
generated_ids = torch.cat([generated_ids, next_token.unsqueeze(0)], dim=1)
|
| 172 |
+
|
| 173 |
+
stop_generation = False
|
| 174 |
+
current_sequence_list = generated_ids.tolist()[0]
|
| 175 |
+
for stop_seq_ids in stop_sequences_ids:
|
| 176 |
+
if len(current_sequence_list) >= len(stop_seq_ids):
|
| 177 |
+
if current_sequence_list[-len(stop_seq_ids) :] == stop_seq_ids:
|
| 178 |
+
stop_generation = True
|
| 179 |
+
break
|
| 180 |
+
if stop_generation:
|
| 181 |
+
break
|
| 182 |
+
|
| 183 |
+
# If there's anything left in the buffer, decode it with replacement for errors.
|
| 184 |
+
if byte_buffer:
|
| 185 |
+
yield byte_buffer.decode("utf-8", errors="replace")
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def generate_text(
|
| 189 |
+
model,
|
| 190 |
+
tokenizer,
|
| 191 |
+
prompt,
|
| 192 |
+
max_new_tokens=100,
|
| 193 |
+
temperature=1.0,
|
| 194 |
+
top_k=0,
|
| 195 |
+
repetition_penalty=1.0,
|
| 196 |
+
device=None,
|
| 197 |
+
stop_sequences=[],
|
| 198 |
+
):
|
| 199 |
+
"""
|
| 200 |
+
Generate text from a prompt using the trained model.
|
| 201 |
+
This is a convenience wrapper around generate_text_stream.
|
| 202 |
+
"""
|
| 203 |
+
generated_text = "".join(
|
| 204 |
+
generate_text_stream(
|
| 205 |
+
model=model,
|
| 206 |
+
tokenizer=tokenizer,
|
| 207 |
+
prompt=prompt,
|
| 208 |
+
max_new_tokens=max_new_tokens,
|
| 209 |
+
temperature=temperature,
|
| 210 |
+
top_k=top_k,
|
| 211 |
+
repetition_penalty=repetition_penalty,
|
| 212 |
+
device=device,
|
| 213 |
+
stop_sequences=stop_sequences,
|
| 214 |
+
)
|
| 215 |
+
)
|
| 216 |
+
full_text = prompt + generated_text
|
| 217 |
+
return generated_text, full_text
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def main():
|
| 221 |
+
parser = argparse.ArgumentParser(
|
| 222 |
+
description="Text generation with DiffAttention LLM"
|
| 223 |
+
)
|
| 224 |
+
parser.add_argument("--checkpoint", type=str, help="Path to the checkpoint file")
|
| 225 |
+
parser.add_argument(
|
| 226 |
+
"--prompt",
|
| 227 |
+
type=str,
|
| 228 |
+
default="""\nHow many 'b's are in "barber"? \n""",
|
| 229 |
+
)
|
| 230 |
+
parser.add_argument(
|
| 231 |
+
"--max_tokens",
|
| 232 |
+
type=int,
|
| 233 |
+
default=500,
|
| 234 |
+
help="Maximum number of tokens to generate",
|
| 235 |
+
)
|
| 236 |
+
parser.add_argument(
|
| 237 |
+
"--temperature", type=float, default=0.7, help="Sampling temperature"
|
| 238 |
+
)
|
| 239 |
+
parser.add_argument(
|
| 240 |
+
"--top_k", type=int, default=10, help="Top-k sampling parameter (0 to disable)"
|
| 241 |
+
)
|
| 242 |
+
parser.add_argument(
|
| 243 |
+
"--top_p",
|
| 244 |
+
type=float,
|
| 245 |
+
default=0.9,
|
| 246 |
+
help="Top-p (nucleus) sampling parameter (0 to disable)",
|
| 247 |
+
)
|
| 248 |
+
parser.add_argument(
|
| 249 |
+
"--repetition_penalty",
|
| 250 |
+
type=float,
|
| 251 |
+
default=1.2,
|
| 252 |
+
help="Repetition penalty (1.0 for no penalty)",
|
| 253 |
+
)
|
| 254 |
+
parser.add_argument(
|
| 255 |
+
"--list_checkpoints",
|
| 256 |
+
action="store_true",
|
| 257 |
+
help="List available checkpoints and exit",
|
| 258 |
+
)
|
| 259 |
+
args = parser.parse_args()
|
| 260 |
+
|
| 261 |
+
# List checkpoints if requested
|
| 262 |
+
if args.list_checkpoints:
|
| 263 |
+
print("Available checkpoints:")
|
| 264 |
+
checkpoints = list_checkpoints()
|
| 265 |
+
for i, ckpt in enumerate(checkpoints):
|
| 266 |
+
print(f"{i+1}. {ckpt}")
|
| 267 |
+
return
|
| 268 |
+
|
| 269 |
+
# If no checkpoint specified, use the latest one
|
| 270 |
+
if not args.checkpoint:
|
| 271 |
+
checkpoints = list_checkpoints()
|
| 272 |
+
if not checkpoints:
|
| 273 |
+
print("No checkpoints found. Please train the model first.")
|
| 274 |
+
return
|
| 275 |
+
|
| 276 |
+
# Find the latest epoch_end checkpoint
|
| 277 |
+
end_checkpoints = [ckpt for ckpt in checkpoints if "end.pt" in ckpt]
|
| 278 |
+
if end_checkpoints:
|
| 279 |
+
latest_checkpoint = max(end_checkpoints)
|
| 280 |
+
else:
|
| 281 |
+
latest_checkpoint = max(checkpoints)
|
| 282 |
+
|
| 283 |
+
checkpoint_path = os.path.join("checkpoints", latest_checkpoint)
|
| 284 |
+
else:
|
| 285 |
+
checkpoint_path = args.checkpoint
|
| 286 |
+
|
| 287 |
+
# Set device
|
| 288 |
+
if torch.backends.mps.is_available() and not force_CPU:
|
| 289 |
+
device = torch.device("mps")
|
| 290 |
+
else:
|
| 291 |
+
device = torch.device(
|
| 292 |
+
"cuda" if torch.cuda.is_available() and not force_CPU else "cpu"
|
| 293 |
+
)
|
| 294 |
+
print(f"Using device: {device}")
|
| 295 |
+
|
| 296 |
+
# Initialize tokenizer
|
| 297 |
+
tokenizer = ByteTokenizer()
|
| 298 |
+
|
| 299 |
+
# Load model
|
| 300 |
+
model = load_model(checkpoint_path, device)
|
| 301 |
+
|
| 302 |
+
# Generate text
|
| 303 |
+
print(f"\nGenerating text with prompt: '{args.prompt}'")
|
| 304 |
+
print(
|
| 305 |
+
f"Parameters: temperature={args.temperature}, top_k={args.top_k}, top_p={args.top_p}, repetition_penalty={args.repetition_penalty}"
|
| 306 |
+
)
|
| 307 |
+
print("\nGenerating...")
|
| 308 |
+
|
| 309 |
+
generated_text, full_text = generate_text(
|
| 310 |
+
model=model,
|
| 311 |
+
tokenizer=tokenizer,
|
| 312 |
+
prompt=args.prompt,
|
| 313 |
+
max_new_tokens=args.max_tokens,
|
| 314 |
+
temperature=args.temperature,
|
| 315 |
+
top_k=args.top_k,
|
| 316 |
+
top_p=args.top_p,
|
| 317 |
+
repetition_penalty=args.repetition_penalty,
|
| 318 |
+
device=device,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
print("\n\nGenerated completion only:")
|
| 322 |
+
print("-" * 40)
|
| 323 |
+
print(generated_text)
|
| 324 |
+
print("-" * 40)
|
| 325 |
+
|
| 326 |
+
print("\nFull generated text (prompt + completion):")
|
| 327 |
+
print("-" * 40)
|
| 328 |
+
print(full_text)
|
| 329 |
+
print("-" * 40)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
if __name__ == "__main__":
|
| 333 |
+
import argparse
|
| 334 |
+
|
| 335 |
+
main()
|