# Model name string, or null to use whatever is provided in the chat completion request model: ~ # JSON schema of the model's output response_format: | { "properties": { "answer_relevance_analysis": { "title": "Answer Relevance Analysis", "type": "string" }, "answer_relevance_category": { "title": "Answer Relevance Category", "type": "string", "enum": [ "Pertinent", "Pertinent with relevant extra", "Excessive unnecessary information", "Unduly restrictive", "Too vague or generic", "Contextual misalignment", "Misinterpreted inquiry", "No attempt" ] }, "answer_relevance_judgment": { "title": "Answer Relevance Judgment", "type": "boolean" } }, "required": [ "answer_relevance_analysis", "answer_relevance_category", "answer_relevance_judgment" ], "title": "AnswerRelevanceRawOutput", "type": "object" } # Additional turn of instructions to add to the chat instruction: "answer_relevance" # Data transformations to perform during post-processing transformations: # Convert categorical answer to continuous value by decoding logprobs - type: likelihood categories_to_values: true: 1.0 false: 0.0 input_path: ["answer_relevance_judgment"] # Rename answer_relevance_judgment column to reflect likelihood transformation - type: project input_path: [] retained_fields: "answer_relevance_analysis": "answer_relevance_analysis" "answer_relevance_category": "answer_relevance_category" "answer_relevance_judgment": "answer_relevance_likelihood" parameters: # Current LoRA can be quite verbose in its explanations. max_completion_tokens: 1024 sentence_boundaries: ~