Initial upload: laal-embedding-v1 (Sentence-Transformers, instruction model)
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +184 -0
- config.json +27 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +56 -0
- training_summary.json +13 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
|
| 3 |
+
language:
|
| 4 |
+
|
| 5 |
+
- ko
|
| 6 |
+
- en
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
library_name: sentence-transformers
|
| 9 |
+
tags:
|
| 10 |
+
- sentence-transformers
|
| 11 |
+
- text-embeddings
|
| 12 |
+
- retrieval
|
| 13 |
+
- mteb
|
| 14 |
+
- korean
|
| 15 |
+
- multilingual
|
| 16 |
+
- e5
|
| 17 |
+
pipeline_tag: sentence-similarity
|
| 18 |
+
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# laal-embedding-v1
|
| 22 |
+
|
| 23 |
+
**laal-embedding-v1** is a Sentence-Transformers embedding model fine-tuned from
|
| 24 |
+
**`intfloat/multilingual-e5-large-instruct`** for improved **retrieval-oriented semantic search**, with a focus on **Korean fire-safety and legal-domain text**.
|
| 25 |
+
|
| 26 |
+
* **Base model:** `intfloat/multilingual-e5-large-instruct`
|
| 27 |
+
* **Embedding dimension:** 1024
|
| 28 |
+
* **Similarity function:** cosine
|
| 29 |
+
* **Max tokens:** 512
|
| 30 |
+
* **Architecture:** XLM-RoBERTa (24 layers)
|
| 31 |
+
* **HF repo:** [https://huggingface.co/jjp97/laal-embedding-v1](https://huggingface.co/jjp97/laal-embedding-v1)
|
| 32 |
+
|
| 33 |
+
> ⚠️ **Important**
|
| 34 |
+
> This model uses **fixed instruction prefixes** defined in `config_sentence_transformers.json`.
|
| 35 |
+
> **Always pass raw text to `encode()`**.
|
| 36 |
+
> Do **NOT** manually prepend instruction strings.
|
| 37 |
+
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
## Prompting (Important)
|
| 41 |
+
|
| 42 |
+
This model applies different fixed prefixes depending on the input type.
|
| 43 |
+
|
| 44 |
+
### Query prefix
|
| 45 |
+
|
| 46 |
+
```
|
| 47 |
+
Instruct: Given a web search query, retrieve relevant passages that answer the query.
|
| 48 |
+
Query:
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
### Passage prefix
|
| 52 |
+
|
| 53 |
+
```
|
| 54 |
+
title: none
|
| 55 |
+
text:
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
These prefixes are **automatically applied** by Sentence-Transformers via
|
| 59 |
+
`config_sentence_transformers.json`.
|
| 60 |
+
|
| 61 |
+
### Correct usage ✅
|
| 62 |
+
|
| 63 |
+
```python
|
| 64 |
+
from sentence_transformers import SentenceTransformer
|
| 65 |
+
|
| 66 |
+
model = SentenceTransformer("jjp97/laal-embedding-v1")
|
| 67 |
+
|
| 68 |
+
q_emb = model.encode("화재 시 대피 방법")
|
| 69 |
+
p_emb = model.encode("화재가 발생하면 즉시 119에 신고하고 안전한 경로로 대피해야 한다.")
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
### Incorrect usage ❌ (double-prefixing)
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
# Do NOT do this
|
| 76 |
+
q = "Instruct: Given a web search query, retrieve relevant passages...\nQuery: 화재 시 대피 방법"
|
| 77 |
+
emb = model.encode(q)
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
---
|
| 81 |
+
|
| 82 |
+
## Training
|
| 83 |
+
|
| 84 |
+
### Objective
|
| 85 |
+
|
| 86 |
+
* Contrastive learning (InfoNCE)
|
| 87 |
+
* In-batch negatives
|
| 88 |
+
* Temperature (`tau`): **0.05**
|
| 89 |
+
* Regularization: **GOR (spread-out loss)**
|
| 90 |
+
|
| 91 |
+
* `gor_lambda = 0.001`
|
| 92 |
+
* `gor_max_samples = 64`
|
| 93 |
+
|
| 94 |
+
### Data
|
| 95 |
+
|
| 96 |
+
* Training examples: **43,983**
|
| 97 |
+
* Format: (query, positive passage)
|
| 98 |
+
* Hard negatives: **enabled**
|
| 99 |
+
|
| 100 |
+
* `max_hn_per_example_train = 2`
|
| 101 |
+
|
| 102 |
+
> Training data consists of domain-specific Korean fire-safety and legal documents
|
| 103 |
+
> (private / curated dataset).
|
| 104 |
+
|
| 105 |
+
### Hyperparameters (summary)
|
| 106 |
+
|
| 107 |
+
* Batch size: **512**
|
| 108 |
+
* Epochs: **3**
|
| 109 |
+
* Learning rate: **1e-5**
|
| 110 |
+
* Warmup ratio: **0.1**
|
| 111 |
+
* Approx. total steps: **255**
|
| 112 |
+
|
| 113 |
+
---
|
| 114 |
+
|
| 115 |
+
## Model Architecture
|
| 116 |
+
|
| 117 |
+
This model follows the standard Sentence-Transformers pipeline:
|
| 118 |
+
|
| 119 |
+
1. **Transformer**: XLM-RoBERTa (24 layers, hidden size 1024)
|
| 120 |
+
2. **Pooling**: mean pooling
|
| 121 |
+
3. **Normalization**: L2 normalization
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
## Intended Use
|
| 126 |
+
|
| 127 |
+
* Retrieval and semantic search (RAG pipelines)
|
| 128 |
+
* Domain-specific QA (fire safety, legal text)
|
| 129 |
+
* Embedding-based similarity and clustering
|
| 130 |
+
(best performance in retrieval-style settings)
|
| 131 |
+
|
| 132 |
+
---
|
| 133 |
+
|
| 134 |
+
## Evaluation
|
| 135 |
+
|
| 136 |
+
### Sanity check
|
| 137 |
+
|
| 138 |
+
Query–passage cosine similarity shows reasonable separation between relevant and irrelevant passages.
|
| 139 |
+
|
| 140 |
+
### MTEB
|
| 141 |
+
|
| 142 |
+
This model is intended for evaluation on the **MTEB leaderboard**.
|
| 143 |
+
When reporting results, please specify:
|
| 144 |
+
|
| 145 |
+
* model name: `jjp97/laal-embedding-v1`
|
| 146 |
+
* exact revision (commit hash)
|
| 147 |
+
* benchmark suite used
|
| 148 |
+
|
| 149 |
+
---
|
| 150 |
+
|
| 151 |
+
## Limitations
|
| 152 |
+
|
| 153 |
+
* Performance may degrade if instruction prefixes are manually added (double-prefixing).
|
| 154 |
+
* Fine-tuned primarily for retrieval; performance on classification/STS tasks may vary.
|
| 155 |
+
* Domain bias toward Korean fire-safety / legal text.
|
| 156 |
+
|
| 157 |
+
---
|
| 158 |
+
|
| 159 |
+
## License
|
| 160 |
+
|
| 161 |
+
* Released under **Apache-2.0**, following the base model license.
|
| 162 |
+
|
| 163 |
+
---
|
| 164 |
+
|
| 165 |
+
## Acknowledgements
|
| 166 |
+
|
| 167 |
+
* Base model: **Multilingual E5**
|
| 168 |
+
Liang Wang et al., *Multilingual E5 Text Embeddings*, arXiv:2402.05672
|
| 169 |
+
* Sentence-Transformers library
|
| 170 |
+
|
| 171 |
+
---
|
| 172 |
+
|
| 173 |
+
## Citation
|
| 174 |
+
|
| 175 |
+
If you use this model, please cite:
|
| 176 |
+
|
| 177 |
+
```bibtex
|
| 178 |
+
@misc{laal_embedding_v1_2025,
|
| 179 |
+
title = {laal-embedding-v1},
|
| 180 |
+
author = {Park, Jeongjae},
|
| 181 |
+
year = {2025},
|
| 182 |
+
howpublished = {Hugging Face model card},
|
| 183 |
+
}
|
| 184 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"dtype": "float32",
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 1024,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 4096,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 514,
|
| 17 |
+
"model_type": "xlm-roberta",
|
| 18 |
+
"num_attention_heads": 16,
|
| 19 |
+
"num_hidden_layers": 24,
|
| 20 |
+
"output_past": true,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"transformers_version": "4.56.1",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"vocab_size": 250002
|
| 27 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "5.1.0",
|
| 4 |
+
"transformers": "4.56.1",
|
| 5 |
+
"pytorch": "2.8.0+cu128"
|
| 6 |
+
},
|
| 7 |
+
"model_type": "SentenceTransformer",
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: ",
|
| 10 |
+
"passage": "title: none\ntext: "
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5438aef6c99a7765c6126ced5a2902a95525b12bb2bf5ed2ee1008f515ea9476
|
| 3 |
+
size 2239607176
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
sentencepiece.bpe.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
| 3 |
+
size 5069051
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"additional_special_tokens": [],
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": true,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"extra_special_tokens": {},
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"model_max_length": 512,
|
| 52 |
+
"pad_token": "<pad>",
|
| 53 |
+
"sep_token": "</s>",
|
| 54 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 55 |
+
"unk_token": "<unk>"
|
| 56 |
+
}
|
training_summary.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "intfloat/multilingual-e5-large-instruct",
|
| 3 |
+
"train_examples": 43983,
|
| 4 |
+
"batch_size": 512,
|
| 5 |
+
"epochs": 3,
|
| 6 |
+
"learning_rate": 1e-05,
|
| 7 |
+
"total_steps_approx": 255,
|
| 8 |
+
"warmup_ratio": 0.1,
|
| 9 |
+
"tau": 0.05,
|
| 10 |
+
"gor_lambda": 0.001,
|
| 11 |
+
"gor_max_samples": 64,
|
| 12 |
+
"max_hn_per_example_train": 2
|
| 13 |
+
}
|