--- library_name: transformers license: mit base_model: intfloat/multilingual-e5-base tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: alignment-score-model results: [] --- # alignment-score-model This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the alignment dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 - Precision: 0.9802 - Recall: 0.9786 - F1 Macro: 0.9790 - Accuracy: 0.9790 Training script is available here: https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/alignment_score.py ## Model description This model measure how likely the given text is a disinformation or unaligned to Ukrainian context. ## Intended uses & limitations Data filtering and evaluation of pretraining data at scale ## Training and evaluation data Take a look into https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/alignment_score.py ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 32 - eval_batch_size: 128 - seed: 0 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 1024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | No log | 0 | 0 | 0.3688 | 0.2550 | 0.5 | 0.3377 | 0.5100 | | No log | 1.0 | 31 | 0.2516 | 0.7558 | 0.5033 | 0.3450 | 0.5132 | | No log | 2.0 | 62 | 0.1391 | 0.8851 | 0.8467 | 0.8454 | 0.8498 | | No log | 3.0 | 93 | 0.1016 | 0.9340 | 0.9209 | 0.9217 | 0.9225 | | 0.1646 | 4.0 | 124 | 0.0770 | 0.9693 | 0.9659 | 0.9665 | 0.9666 | | 0.1646 | 5.0 | 155 | 0.0648 | 0.9778 | 0.9758 | 0.9763 | 0.9763 | | 0.1646 | 6.0 | 186 | 0.0610 | 0.9802 | 0.9786 | 0.9790 | 0.9790 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.6.0a0+ecf3bae40a.nv25.01 - Datasets 4.0.0 - Tokenizers 0.22.0