Commit
Β·
c26362f
1
Parent(s):
e7d7e74
Simplified model loading
Browse files- .gitignore +1 -0
- README.md +2 -2
- config.json +6 -0
- configuration_talk2dino.py +49 -0
- hf_demo.ipynb +0 -0
- modeling_talk2dino.py +42 -0
- {hf_model β src}/__init__.py +0 -0
- hf_model/talk2dino.py β src/dinotext.py +12 -43
- {hf_model β src}/hooks.py +0 -0
- {hf_model β src}/masker.py +2 -2
- {hf_model β src}/model.py +1 -1
- {hf_model β src}/modules.py +0 -0
- {hf_model β src}/pamr.py +0 -0
- {hf_model β src}/templates.py +0 -0
- {hf_model β src}/us.py +0 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
README.md
CHANGED
|
@@ -43,14 +43,14 @@ Open-Vocabulary Segmentation (OVS) aims at segmenting images from free-form text
|
|
| 43 |
### Mapping CLIP Text Embeddings to DINOv2 space with Talk2DINO
|
| 44 |
We can use Talk2DINO to map CLIP text embeddings into the DINOv2 patch embedding space.
|
| 45 |
```python
|
| 46 |
-
from
|
| 47 |
from torchvision.io import read_image
|
| 48 |
|
| 49 |
# Device setup
|
| 50 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 51 |
|
| 52 |
# Model Loading
|
| 53 |
-
model =
|
| 54 |
|
| 55 |
# Embedding generation
|
| 56 |
with torch.no_grad():
|
|
|
|
| 43 |
### Mapping CLIP Text Embeddings to DINOv2 space with Talk2DINO
|
| 44 |
We can use Talk2DINO to map CLIP text embeddings into the DINOv2 patch embedding space.
|
| 45 |
```python
|
| 46 |
+
from transformers import AutoModel
|
| 47 |
from torchvision.io import read_image
|
| 48 |
|
| 49 |
# Device setup
|
| 50 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 51 |
|
| 52 |
# Model Loading
|
| 53 |
+
model = AutoModel.from_pretrained("lorebianchi98/Talk2DINO-ViTL").to(device).eval()
|
| 54 |
|
| 55 |
# Embedding generation
|
| 56 |
with torch.no_grad():
|
config.json
CHANGED
|
@@ -1,4 +1,10 @@
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"avg_self_attn_token": false,
|
| 3 |
"clip_model_name": "ViT-B/16",
|
| 4 |
"disentangled_self_attn_token": true,
|
|
|
|
| 1 |
{
|
| 2 |
+
"architectures": ["Talk2DINO"],
|
| 3 |
+
"model_type": "talk2dino",
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"AutoConfig": "configuration_talk2dino.Talk2DINOConfig",
|
| 6 |
+
"AutoModel": "modeling_talk2dino.Talk2DINO"
|
| 7 |
+
},
|
| 8 |
"avg_self_attn_token": false,
|
| 9 |
"clip_model_name": "ViT-B/16",
|
| 10 |
"disentangled_self_attn_token": true,
|
configuration_talk2dino.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import PretrainedConfig
|
| 3 |
+
|
| 4 |
+
class Talk2DINOConfig(PretrainedConfig):
|
| 5 |
+
model_type = "talk2dino"
|
| 6 |
+
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
avg_self_attn_token=False,
|
| 10 |
+
clip_model_name="ViT-B/16",
|
| 11 |
+
disentangled_self_attn_token=True,
|
| 12 |
+
is_eval=True,
|
| 13 |
+
keep_cls=False,
|
| 14 |
+
keep_end_seq=False,
|
| 15 |
+
loss=None,
|
| 16 |
+
model_name="dinov2_vitb14_reg",
|
| 17 |
+
pre_trained=True,
|
| 18 |
+
proj_class="vitb_mlp_infonce",
|
| 19 |
+
proj_model="ProjectionLayer",
|
| 20 |
+
proj_name="vitb_mlp_infonce",
|
| 21 |
+
resize_dim=518,
|
| 22 |
+
type="DINOText",
|
| 23 |
+
unfreeze_last_image_layer=False,
|
| 24 |
+
unfreeze_last_text_layer=False,
|
| 25 |
+
use_avg_text_token=False,
|
| 26 |
+
with_bg_clean=False,
|
| 27 |
+
**kwargs,
|
| 28 |
+
):
|
| 29 |
+
super().__init__(**kwargs)
|
| 30 |
+
|
| 31 |
+
# Store all parameters
|
| 32 |
+
self.avg_self_attn_token = avg_self_attn_token
|
| 33 |
+
self.clip_model_name = clip_model_name
|
| 34 |
+
self.disentangled_self_attn_token = disentangled_self_attn_token
|
| 35 |
+
self.is_eval = is_eval
|
| 36 |
+
self.keep_cls = keep_cls
|
| 37 |
+
self.keep_end_seq = keep_end_seq
|
| 38 |
+
self.loss = loss
|
| 39 |
+
self.model_name = model_name
|
| 40 |
+
self.pre_trained = pre_trained
|
| 41 |
+
self.proj_class = proj_class
|
| 42 |
+
self.proj_model = proj_model
|
| 43 |
+
self.proj_name = proj_name
|
| 44 |
+
self.resize_dim = resize_dim
|
| 45 |
+
self.type = type
|
| 46 |
+
self.unfreeze_last_image_layer = unfreeze_last_image_layer
|
| 47 |
+
self.unfreeze_last_text_layer = unfreeze_last_text_layer
|
| 48 |
+
self.use_avg_text_token = use_avg_text_token
|
| 49 |
+
self.with_bg_clean = with_bg_clean
|
hf_demo.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_talk2dino.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from src.dinotext import DINOText
|
| 2 |
+
from transformers import PreTrainedModel
|
| 3 |
+
from configuration_talk2dino import Talk2DINOConfig
|
| 4 |
+
import clip
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
class Talk2DINO(DINOText, PreTrainedModel):
|
| 8 |
+
config_class = Talk2DINOConfig
|
| 9 |
+
|
| 10 |
+
def __init__(self, config: Talk2DINOConfig):
|
| 11 |
+
# Store the config
|
| 12 |
+
self.config = config
|
| 13 |
+
|
| 14 |
+
# Convert config to a dict (works for PretrainedConfig subclasses)
|
| 15 |
+
cfg_dict = config.to_dict()
|
| 16 |
+
|
| 17 |
+
# Initialize parent (DINOText) with unpacked kwargs
|
| 18 |
+
super().__init__(**cfg_dict)
|
| 19 |
+
|
| 20 |
+
def encode_text(self, texts):
|
| 21 |
+
""" texts: string or list of strings
|
| 22 |
+
returns: text embeddings (N, D) where N is the number of texts, D is the embedding dimension
|
| 23 |
+
"""
|
| 24 |
+
text_tokens = clip.tokenize(texts).to(self.parameters().__next__().device)
|
| 25 |
+
txt_embed = self.clip_model.encode_text(text_tokens)
|
| 26 |
+
txt_embed = self.proj.project_clip_txt(txt_embed)
|
| 27 |
+
return txt_embed
|
| 28 |
+
|
| 29 |
+
def encode_image(self, images):
|
| 30 |
+
""" images: PIL image or list of PIL images
|
| 31 |
+
returns: image embeddings (N, L, D) where N is the number of images, L is the number of patches, D is the embedding dimension
|
| 32 |
+
"""
|
| 33 |
+
if type(images) is not list:
|
| 34 |
+
images = [images]
|
| 35 |
+
img_preprocessed = [self.image_transforms(img).to(next(self.parameters()).device) for img in images]
|
| 36 |
+
img_preprocessed = torch.stack(img_preprocessed)
|
| 37 |
+
if 'dinov2' in self.model_name or 'dinov3' in self.model_name:
|
| 38 |
+
img_embed = self.model.forward_features(img_preprocessed)['x_norm_patchtokens']
|
| 39 |
+
elif 'mae' in self.model_name or 'clip' in self.model_name or 'dino' in self.model_name:
|
| 40 |
+
img_embed = self.model.forward_features(img_preprocessed)[:, 1:, :]
|
| 41 |
+
|
| 42 |
+
return img_embed
|
{hf_model β src}/__init__.py
RENAMED
|
File without changes
|
hf_model/talk2dino.py β src/dinotext.py
RENAMED
|
@@ -16,14 +16,14 @@ from transformers import BertModel, AutoTokenizer
|
|
| 16 |
import torchvision.transforms as T
|
| 17 |
import clip
|
| 18 |
import importlib
|
| 19 |
-
import
|
| 20 |
|
| 21 |
-
from
|
| 22 |
-
from
|
| 23 |
-
from
|
| 24 |
|
| 25 |
-
from
|
| 26 |
-
from
|
| 27 |
|
| 28 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
|
|
@@ -45,7 +45,8 @@ class DINOText(nn.Module):
|
|
| 45 |
self, model_name, resize_dim, clip_model_name, proj_class, proj_name, proj_model, avg_self_attn_token=False, disentangled_self_attn_token=True, loss=None, pre_trained=True,
|
| 46 |
unfreeze_last_text_layer=False, unfreeze_last_image_layer=False, is_eval=True, use_avg_text_token=False, keep_cls=False, keep_end_seq=False, with_bg_clean=False, **kwargs
|
| 47 |
):
|
| 48 |
-
|
|
|
|
| 49 |
self.feats = {}
|
| 50 |
self.model_name = model_name
|
| 51 |
# loading the model
|
|
@@ -82,7 +83,7 @@ class DINOText(nn.Module):
|
|
| 82 |
T.Normalize(mean, std),
|
| 83 |
])
|
| 84 |
|
| 85 |
-
self.model
|
| 86 |
self.model.requires_grad_(False)
|
| 87 |
|
| 88 |
self.clip_model_name = clip_model_name
|
|
@@ -91,7 +92,7 @@ class DINOText(nn.Module):
|
|
| 91 |
# load the corresponding wordtokenizer
|
| 92 |
self.tokenizer = AutoTokenizer.from_pretrained(self.clip_model_name)
|
| 93 |
else:
|
| 94 |
-
self.clip_model, _ = clip.load(clip_model_name, device=
|
| 95 |
self.clip_model.eval()
|
| 96 |
self.clip_model.requires_grad_(False)
|
| 97 |
if unfreeze_last_text_layer:
|
|
@@ -118,13 +119,11 @@ class DINOText(nn.Module):
|
|
| 118 |
}
|
| 119 |
|
| 120 |
self.proj = ProjectionLayer.from_config(config)
|
| 121 |
-
if type(self.proj) == CLIPLastLayer:
|
| 122 |
-
self.clip_model.transformer.resblocks[-2].register_forward_hook(self.get_clip_second_last_dense_out)
|
| 123 |
|
| 124 |
|
| 125 |
# if pre_trained:
|
| 126 |
# self.proj.load_state_dict(torch.load(os.path.join("weights", f"{proj_name}.pth"), 'cpu'))
|
| 127 |
-
self.proj
|
| 128 |
|
| 129 |
self.masker = DINOTextMasker(similarity_type="cosine")
|
| 130 |
self.masker = self.masker.eval()
|
|
@@ -166,12 +165,7 @@ class DINOText(nn.Module):
|
|
| 166 |
return self_attn
|
| 167 |
|
| 168 |
def encode_text(self, tokenized_texts):
|
| 169 |
-
|
| 170 |
-
self.clip_model.encode_text(tokenized_texts)
|
| 171 |
-
x = self.feats['clip_second_last_out']
|
| 172 |
-
x = x.to(dtype=torch.float32)
|
| 173 |
-
else:
|
| 174 |
-
x = self.clip_model.encode_text(tokenized_texts)
|
| 175 |
return x
|
| 176 |
|
| 177 |
def encode_image(self, images):
|
|
@@ -404,29 +398,4 @@ class DINOText(nn.Module):
|
|
| 404 |
return mask_output
|
| 405 |
|
| 406 |
|
| 407 |
-
from huggingface_hub import PyTorchModelHubMixin
|
| 408 |
|
| 409 |
-
class Talk2DINO(DINOText, PyTorchModelHubMixin):
|
| 410 |
-
def encode_text(self, texts):
|
| 411 |
-
""" texts: string or list of strings
|
| 412 |
-
returns: text embeddings (N, D) where N is the number of texts, D is the embedding dimension
|
| 413 |
-
"""
|
| 414 |
-
text_tokens = clip.tokenize(texts).to(self.parameters().__next__().device)
|
| 415 |
-
txt_embed = self.clip_model.encode_text(text_tokens)
|
| 416 |
-
txt_embed = self.proj.project_clip_txt(txt_embed)
|
| 417 |
-
return txt_embed
|
| 418 |
-
|
| 419 |
-
def encode_image(self, images):
|
| 420 |
-
""" images: PIL image or list of PIL images
|
| 421 |
-
returns: image embeddings (N, L, D) where N is the number of images, L is the number of patches, D is the embedding dimension
|
| 422 |
-
"""
|
| 423 |
-
if type(images) is not list:
|
| 424 |
-
images = [images]
|
| 425 |
-
img_preprocessed = [self.image_transforms(img).to(next(self.parameters()).device) for img in images]
|
| 426 |
-
img_preprocessed = torch.stack(img_preprocessed)
|
| 427 |
-
if 'dinov2' in self.model_name or 'dinov3' in self.model_name:
|
| 428 |
-
img_embed = self.model.forward_features(img_preprocessed)['x_norm_patchtokens']
|
| 429 |
-
elif 'mae' in self.model_name or 'clip' in self.model_name or 'dino' in self.model_name:
|
| 430 |
-
img_embed = self.model.forward_features(img_preprocessed)[:, 1:, :]
|
| 431 |
-
|
| 432 |
-
return img_embed
|
|
|
|
| 16 |
import torchvision.transforms as T
|
| 17 |
import clip
|
| 18 |
import importlib
|
| 19 |
+
import src.us as us
|
| 20 |
|
| 21 |
+
from src.pamr import PAMR
|
| 22 |
+
from src.masker import DINOTextMasker
|
| 23 |
+
from src.templates import get_template
|
| 24 |
|
| 25 |
+
from src.model import ProjectionLayer, VisualProjectionLayer, CLIPLastLayer, DoubleMLP
|
| 26 |
+
from src.hooks import average_text_tokens, get_vit_out, feats
|
| 27 |
|
| 28 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
|
|
|
|
| 45 |
self, model_name, resize_dim, clip_model_name, proj_class, proj_name, proj_model, avg_self_attn_token=False, disentangled_self_attn_token=True, loss=None, pre_trained=True,
|
| 46 |
unfreeze_last_text_layer=False, unfreeze_last_image_layer=False, is_eval=True, use_avg_text_token=False, keep_cls=False, keep_end_seq=False, with_bg_clean=False, **kwargs
|
| 47 |
):
|
| 48 |
+
nn.Module.__init__(self)
|
| 49 |
+
|
| 50 |
self.feats = {}
|
| 51 |
self.model_name = model_name
|
| 52 |
# loading the model
|
|
|
|
| 83 |
T.Normalize(mean, std),
|
| 84 |
])
|
| 85 |
|
| 86 |
+
self.model
|
| 87 |
self.model.requires_grad_(False)
|
| 88 |
|
| 89 |
self.clip_model_name = clip_model_name
|
|
|
|
| 92 |
# load the corresponding wordtokenizer
|
| 93 |
self.tokenizer = AutoTokenizer.from_pretrained(self.clip_model_name)
|
| 94 |
else:
|
| 95 |
+
self.clip_model, _ = clip.load(clip_model_name, device='meta')
|
| 96 |
self.clip_model.eval()
|
| 97 |
self.clip_model.requires_grad_(False)
|
| 98 |
if unfreeze_last_text_layer:
|
|
|
|
| 119 |
}
|
| 120 |
|
| 121 |
self.proj = ProjectionLayer.from_config(config)
|
|
|
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
# if pre_trained:
|
| 125 |
# self.proj.load_state_dict(torch.load(os.path.join("weights", f"{proj_name}.pth"), 'cpu'))
|
| 126 |
+
self.proj
|
| 127 |
|
| 128 |
self.masker = DINOTextMasker(similarity_type="cosine")
|
| 129 |
self.masker = self.masker.eval()
|
|
|
|
| 165 |
return self_attn
|
| 166 |
|
| 167 |
def encode_text(self, tokenized_texts):
|
| 168 |
+
x = self.clip_model.encode_text(tokenized_texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
return x
|
| 170 |
|
| 171 |
def encode_image(self, images):
|
|
|
|
| 398 |
return mask_output
|
| 399 |
|
| 400 |
|
|
|
|
| 401 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{hf_model β src}/hooks.py
RENAMED
|
File without changes
|
{hf_model β src}/masker.py
RENAMED
|
@@ -8,11 +8,11 @@ import torch
|
|
| 8 |
import torch.distributed as dist
|
| 9 |
import torch.nn as nn
|
| 10 |
import torch.nn.functional as F
|
| 11 |
-
import
|
| 12 |
from einops import rearrange, repeat
|
| 13 |
|
| 14 |
# from models.dinotext.gumbel import gumbel_sigmoid
|
| 15 |
-
from
|
| 16 |
from omegaconf import OmegaConf
|
| 17 |
|
| 18 |
|
|
|
|
| 8 |
import torch.distributed as dist
|
| 9 |
import torch.nn as nn
|
| 10 |
import torch.nn.functional as F
|
| 11 |
+
import src.us as us
|
| 12 |
from einops import rearrange, repeat
|
| 13 |
|
| 14 |
# from models.dinotext.gumbel import gumbel_sigmoid
|
| 15 |
+
from src.modules import FeatureEncoder
|
| 16 |
from omegaconf import OmegaConf
|
| 17 |
|
| 18 |
|
{hf_model β src}/model.py
RENAMED
|
@@ -4,7 +4,7 @@ import torch
|
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
|
| 7 |
-
from
|
| 8 |
|
| 9 |
class VisualProjectionLayer(nn.Module):
|
| 10 |
"""
|
|
|
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
|
| 7 |
+
from src.hooks import get_self_attention, process_self_attention, feats
|
| 8 |
|
| 9 |
class VisualProjectionLayer(nn.Module):
|
| 10 |
"""
|
{hf_model β src}/modules.py
RENAMED
|
File without changes
|
{hf_model β src}/pamr.py
RENAMED
|
File without changes
|
{hf_model β src}/templates.py
RENAMED
|
File without changes
|
{hf_model β src}/us.py
RENAMED
|
File without changes
|