File size: 82,863 Bytes
9da72c7 0f878ee 9da72c7 0f878ee 9da72c7 0f878ee 9da72c7 0f878ee 9da72c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 |
# coding=utf-8
# Copyright 2025 NVIDIA Corporation. All rights reserved.
""" PyTorch Nemotron-Flash model."""
import inspect
import math
import copy
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import time
import numpy as np
import os
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
torch._inductor.config.max_autotune_gemm_backends = ["aten"]
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.generation import GenerationMixin
try:
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
except ImportError:
pass
from transformers.utils import (
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_nemotron_flash import NemotronFlashConfig
import math
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
from einops import rearrange, repeat, reduce, pack, unpack
from .fused_mha_with_cache import fused_mha_interface
from .mamba2 import Mamba2
from mamba_ssm.utils.generation import InferenceParams
from .delta_net import Cache as fla_cache
from .delta_net import DeltaNet
import torch._dynamo
torch._dynamo.config.suppress_errors = True
from torch.cuda import CUDAGraph
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "NemotronFlashConfig"
class NemotronFlashRMSNorm(nn.Module):
def __init__(self, hidden_size, learnable_weight=True, eps=1e-6):
super().__init__()
if learnable_weight:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
self.weight = None
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
if self.weight is not None:
return self.weight * hidden_states.to(input_dtype)
else:
return hidden_states.to(input_dtype)
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, config, dim, base=10000, device=None, scaling_factor=1.0):
super().__init__()
self.scaling_factor = scaling_factor
self.dim = dim
self.base = base
self.config = config
self.rope_type = config.rope_type
self.factor = 2
max_position_embeddings = self.config.max_position_embeddings
if config.rope_type is None or config.rope_type == "default":
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.max_seq_len_cached = max_position_embeddings
elif config.rope_type == 'ntk':
assert self.config.orig_max_position_embeddings is not None
orig_max_position_embeddings = self.config.orig_max_position_embeddings
base = base * ((self.factor * max_position_embeddings / orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.max_seq_len_cached = orig_max_position_embeddings
elif config.rope_type == 'dynamic_ntk':
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.original_inv_freq = inv_freq
self.max_seq_len_cached = self.config.orig_max_position_embeddings
else:
raise ValueError(f"Not support rope_type: {config.rope_type}")
self.register_buffer("inv_freq", inv_freq, persistent=False)
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
base = self.base * ((self.factor * seq_len / self.config.orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.max_seq_len_cached = seq_len
if seq_len < self.config.orig_max_position_embeddings and self.max_seq_len_cached > self.config.orig_max_position_embeddings: # reset
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.config.orig_max_position_embeddings
@torch.no_grad()
def forward(self, x, position_ids):
if self.rope_type == 'dynamic_ntk':
self._dynamic_frequency_update(position_ids, device=x.device)
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
if q is not None:
q_embed = (q * cos) + (rotate_half(q) * sin)
else:
q_embed = None
if k is not None:
k_embed = (k * cos) + (rotate_half(k) * sin)
else:
k_embed = None
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class AttentionDynamicCache(DynamicCache):
def __init__(self, config, batch_size, dtype=torch.float16, device=None, layer_type=None):
self.dtype = dtype
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.key_cache[layer_idx].shape[-1] == 0:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def get_seq_length(self, layer_idx=None) -> int:
if layer_idx is None:
max_key_len = max(cache.shape[-2] for cache in self.key_cache)
return max_key_len
if self.key_cache[layer_idx].shape[-1] == 0:
return 0
return self.key_cache[layer_idx].shape[-2]
# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention
class NemotronFlashAttention(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: Optional[int] = None, input_hidden_size=None, output_hidden_size=None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.attn_hidden_size if config.attn_hidden_size > 0 else config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.kq_head_dim = config.kq_head_dim if config.kq_head_dim > 0 else self.head_dim
self.v_head_dim = config.v_head_dim if config.v_head_dim > 0 else self.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size and self.kq_head_dim == self.head_dim:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_heads * self.kq_head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.kq_head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.v_head_dim, bias=False)
if output_hidden_size is None:
output_hidden_size = self.hidden_size
self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, output_hidden_size, bias=False)
if self.config.kq_norm == "rms":
self.k_norm = NemotronFlashRMSNorm(self.kq_head_dim)
self.q_norm = NemotronFlashRMSNorm(self.kq_head_dim)
elif self.config.kq_norm == "none":
self.k_norm = None
self.q_norm = None
else:
raise NotImplementedError(f"Unknown kq_norm: {self.config.kq_norm}")
if self.config.rope:
self._init_rope()
def _init_rope(self):
self.rotary_emb = LlamaRotaryEmbedding(
config=self.config,
dim=self.kq_head_dim,
base=self.rope_theta,
device=torch.device("cuda"),
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
raise NotImplementedError("NemotronFlashAttention is an abstract class. Use one of the subclasses.")
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2
class NemotronFlashFlashAttention2(NemotronFlashAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
):
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()
if self.q_norm is not None:
query_states = self.q_norm(query_states)
if self.config.rope:
cos, sin = self.rotary_emb(hidden_states, position_ids)
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)
if self.k_norm is not None:
key_states = self.k_norm(key_states)
if self.config.rope:
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
use_sliding_windows = (
_flash_supports_window_size
and getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and use_swa
)
if not _flash_supports_window_size:
logger.warning_once(
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
" make sure to upgrade flash-attn library."
)
swa_processed_flag = False
if past_key_value is not None and use_cache:
kv_layer_idx = self.layer_idx
cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0
if (
getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and cache_has_contents
and use_swa
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[kv_layer_idx][0]
past_value = past_key_value[kv_layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
past_key_value.key_cache[kv_layer_idx] = past_key
past_key_value.value_cache[kv_layer_idx] = past_value
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
swa_processed_flag = True
key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx)
key_states_no_repeat = key_states
value_states_no_repeat = value_states
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
key_states = key_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
value_states = value_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
use_sliding_windows=use_sliding_windows and not swa_processed_flag,
)
v_dim = value_states.shape[-2] * value_states.shape[-1]
attn_output = attn_output.reshape(-1, q_len, v_dim).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)
def _flash_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
use_sliding_windows=False,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
use_sliding_windows (`bool`, *optional*):
Whether to activate sliding window attention.
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
if not use_sliding_windows:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
if not use_sliding_windows:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
# On the first iteration we need to properly re-create the padding mask
# by slicing it on the proper place
if kv_seq_len != attention_mask.shape[-1]:
attention_mask_num_tokens = attention_mask.shape[-1]
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
if not self.training and not type(key_layer) == torch.Tensor: ## this is for handling Mamba2 with output type <class 'mamba_ssm.ops.triton.layernorm_gated.tTensor'>
key_layer = torch.tensor(key_layer.clone())
value_layer = torch.tensor(value_layer.clone())
query_layer = torch.tensor(query_layer.clone())
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class NemotronFlashSDPAAttention(nn.Module):
def __init__(self, config, layer_idx: int, reuse_kv=False):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=False
)
self.sliding_window = self.config.sliding_window if self.layer_idx not in self.config.global_attn_idx else None
self.rotary_emb = NemotronFlashRotaryEmbedding(config=config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor],
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = self.rotary_emb(hidden_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
past_seen_tokens = past_key_value.get_seq_length()
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=hidden_states.device
)
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface = ALL_ATTENTION_FUNCTIONS['flash_attention_2']
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value, (key_states, value_states)
class NemotronFlashRotaryEmbedding(nn.Module):
def __init__(self, config, device=None):
super().__init__()
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
## Interface to use TRTLLM AutoDeploy attention kernel, which enables CUDA Graph capture
class NemotronFlashFusedMHA(NemotronFlashAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.fused_mha_interface = fused_mha_interface
def init_kv_cache(self, max_batch_size, max_seq_len, page_size=-1):
if hasattr(self, 'k_cache'):
del self.k_cache
del self.v_cache
if hasattr(self, 'page_table') and self.page_table is not None:
del self.page_table
import gc
gc.collect()
torch.cuda.empty_cache()
if page_size is not None and page_size > 0:
batch_max_pages = (max_seq_len + page_size - 1) // page_size
cache_max_pages = (max_batch_size * max_seq_len + page_size - 1) // page_size
self.k_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight)
self.v_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight)
self.page_table = torch.zeros(max_batch_size, batch_max_pages, device=self.q_proj.weight.device, dtype=torch.int32)
else:
self.k_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight)
self.v_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight)
self.page_table = None
self.max_seq_len = max_seq_len
def reset_kv_cache(self):
self.k_cache = self.k_cache.zero_()
self.v_cache = self.v_cache.zero_()
if self.page_table is not None:
self.page_table = self.page_table.zero_()
def forward(
self,
hidden_states: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
):
if not hasattr(self, 'k_cache'):
self.init_kv_cache(max_batch_size=1, max_seq_len=8000)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()
if self.q_norm is not None:
query_states = self.q_norm(query_states)
if self.config.rope:
cos, sin = self.rotary_emb(hidden_states, position_ids)
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)
if self.k_norm is not None:
key_states = self.k_norm(key_states)
if self.config.rope:
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)
key_states_no_repeat = key_states
value_states_no_repeat = value_states
query_states = query_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
key_states = key_states.transpose(1, 2) # (batch, slen, num_kv_heads, head_dim)
value_states = value_states.transpose(1, 2) # (batch, slen, num_kv_heads, head_dim)
if self.k_cache.device != query_states.device:
self.k_cache = self.k_cache.to(query_states)
self.v_cache = self.v_cache.to(query_states)
attn_output = self.fused_mha_interface(
query_states,
key_states,
value_states,
k_cache=self.k_cache,
v_cache=self.v_cache,
page_table=self.page_table,
max_seq_len=self.max_seq_len,
position_ids=position_ids,
)
v_dim = query_states.shape[-2] * value_states.shape[-1]
attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)
JAMBA_ATTENTION_CLASSES = {
"flash_attention_2": NemotronFlashFlashAttention2,
"fused_mha": NemotronFlashFusedMHA,
"sdpa": NemotronFlashSDPAAttention,
}
class NemotronFlashMLP(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int):
super().__init__()
self.config = config
self.act_fn_name = config.mlp_hidden_act
self.act_fn = ACT2FN[self.act_fn_name]
if config.ffn_expand_ratio is not None:
self.ffn_dim = int(config.ffn_expand_ratio * config.hidden_size) // 128 * 128
else:
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.hidden_size
self.layer_idx = layer_idx
if self.act_fn_name == "silu":
self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
def forward(self, x):
if self.act_fn_name == "silu":
output = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
elif self.act_fn_name == "relu2":
output = self.down_proj(self.act_fn(self.up_proj(x)))
else:
raise NotImplementedError(f"No such hidden_act: {self.act_fn_name}")
return output
class NemotronFlashAttentionDecoderLayer(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int,):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.self_attn = JAMBA_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx)
if self.config.intermediate_size > 0:
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.ffn = None
self.pre_ffn_layernorm = None
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]:
position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
residual = hidden_states
if self.input_layernorm is not None:
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value, current_kv = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
use_swa=use_swa,
)
hidden_states = residual + hidden_states
if self.ffn is not None:
residual = hidden_states
if self.pre_ffn_layernorm is not None:
hidden_states = self.pre_ffn_layernorm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
outputs += (current_kv,)
return outputs
class FFNDecoderLayer(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
if self.pre_ffn_layernorm is not None:
hidden_states = self.pre_ffn_layernorm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (None,)
if use_cache:
outputs += (None,)
return outputs
class NemotronFlashMambaDecoderLayer(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.mamba = Mamba2(config=config, layer_idx=layer_idx)
self.intermediate_size = config.intermediate_size
if self.intermediate_size > 0:
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.ffn = None
self.pre_ffn_layernorm = None
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[AttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
mamba_inference_params=None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]:
position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
residual = hidden_states
if self.input_layernorm is not None:
hidden_states = self.input_layernorm(hidden_states)
hidden_states, present_key_value = self.mamba(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
inference_params=mamba_inference_params,
)
attn_key_value = None
hidden_states = residual + hidden_states
if self.intermediate_size > 0:
residual = hidden_states
if self.pre_ffn_layernorm is not None:
hidden_states = self.pre_ffn_layernorm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
outputs += (attn_key_value,)
return outputs
def _get_past_seqlen(self, past_key_value, seqlen):
if past_key_value is None:
return seqlen
past_seqlen = past_key_value.get_seq_length(self.layer_idx)
if past_seqlen == 0:
return seqlen
return past_seqlen
class NemotronFlashHybridDecoderLayer(nn.Module):
def __init__(self, config: NemotronFlashConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if config.hybrid_decoder_layer == 'mamba':
self.mamba = Mamba2(config=config, layer_idx=layer_idx)
if config.hybrid_decoder_layer == 'deltanet':
if config.layer_types is not None:
deltanet_idx = sum(1 for i in range(layer_idx) if config.layer_types[i] == 'deltanet')
else:
deltanet_idx = layer_idx
self.gla = DeltaNet(hidden_size=config.hidden_size, num_heads=config.num_attention_heads, layer_idx=deltanet_idx, config=self.config)
else:
raise ValueError(f"Not supported: {config.hybrid_decoder_layer}")
self.config = config
if self.config.intermediate_size > 0:
self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.ffn = None
self.pre_ffn_layernorm = None
self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[AttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
fla_past_key_values = None,
mamba_inference_params = None,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
if self.config.hybrid_decoder_layer == 'mamba':
hybrid_op_hidden_states, mamba_present_key_value = self.mamba(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
inference_params=mamba_inference_params,
)
else:
hybrid_op_hidden_states, _, fla_past_key_values = self.gla(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=fla_past_key_values,
use_cache=use_cache,
)
self_attn_weights = self_attn_present_key_value = current_kv = None
hidden_states = residual + hybrid_op_hidden_states
if self.ffn is not None:
residual = hidden_states
hidden_states = self.pre_ffn_layernorm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (self_attn_present_key_value,)
outputs += (current_kv,)
return outputs
# Adapted from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel
class NemotronFlashPreTrainedModel(PreTrainedModel):
config_class = NemotronFlashConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["NemotronFlashAttentionDecoderLayer", "NemotronFlashMambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Adapted from transformers.models.mistral.modeling_mistral.MistralModel
class NemotronFlashModel(NemotronFlashPreTrainedModel):
def __init__(self, config: NemotronFlashConfig):
super().__init__(config)
config.attn_implementation = config.attn_implementation_new
config._attn_implementation = config.attn_implementation_new
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
decoder_layers = []
layer_type = []
for i in range(config.num_hidden_layers):
if config.layer_types[i] in ['deltanet']:
layer_type.append('m')
config_new = copy.deepcopy(config)
config_new.hybrid_decoder_layer = 'deltanet'
decoder_layer = NemotronFlashHybridDecoderLayer(config_new, layer_idx=i)
elif config.layer_types[i] in ['m', 'm2']:
layer_type.append('m')
decoder_layer = NemotronFlashMambaDecoderLayer(config, layer_idx=i)
elif config.layer_types[i] == 'a':
layer_type.append('a')
decoder_layer = NemotronFlashAttentionDecoderLayer(config, layer_idx=i)
elif config.layer_types[i] == 'f':
layer_type.append('a')
decoder_layer = FFNDecoderLayer(config, layer_idx=i)
else:
raise ValueError(f"Unsupported layer type {config.layer_types[i]}")
decoder_layers.append(decoder_layer)
config.layer_type = layer_type
if config.sliding_window is not None:
self.sliding_window = config.sliding_window
self.global_attn_idx = config.global_attn_idx
else:
self.sliding_window = None
self.global_attn_idx = None
self.layers = nn.ModuleList(decoder_layers)
self._attn_implementation = config.attn_implementation
self.final_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
if self.config.num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(torch.randn(self.config.num_memory_tokens, self.config.hidden_size))
self.gradient_checkpointing = False
self.post_init()
self.has_previous_state = False
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], AttentionDynamicCache]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
fla_past_key_values = None,
mamba_inference_params = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
if self.config.num_memory_tokens > 0 and past_key_values is not None and not self.has_previous_state:
position_ids = position_ids.view(-1, seq_length + self.config.num_memory_tokens).long()
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
ori_b, ori_n = inputs_embeds.shape[0], inputs_embeds.shape[1]
if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state):
mem = repeat(self.memory_tokens, 'n d -> b n d', b = inputs_embeds.shape[0]) # prepend the memory to every segment of m by repeating the memory tokens
inputs_embeds, mem_packed_shape = pack((mem, inputs_embeds), 'b * d')
if position_ids is not None and position_ids.shape[1] != inputs_embeds.shape[1]:
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0)
if attention_mask is not None and attention_mask.shape[1] < inputs_embeds.shape[1]:
assert attention_mask.shape[1] + self.config.num_memory_tokens == inputs_embeds.shape[1]
attention_mask = torch.cat([torch.ones(inputs_embeds.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of NemotronFlash. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for i, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
use_swa=self.sliding_window is not None and i not in self.global_attn_idx,
fla_past_key_values=fla_past_key_values,
mamba_inference_params=mamba_inference_params,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if self.final_layernorm is not None:
hidden_states = self.final_layernorm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state):
mem, hidden_states = unpack(hidden_states, mem_packed_shape, 'b * d')
hidden_states = hidden_states[:, :ori_n, :]
if past_key_values is not None and not self.has_previous_state:
self.has_previous_state = True
next_cache = None
if use_cache:
next_cache = next_decoder_cache
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if (fla_past_key_values is None and mamba_inference_params is None) else (past_key_values, fla_past_key_values, mamba_inference_params),
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->NemotronFlash
class NemotronFlashForCausalLM(NemotronFlashPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: NemotronFlashConfig):
super().__init__(config)
self.config = config
self.model = NemotronFlashModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
calc_logits_for_entire_prompt: Optional[bool] = True,
fla_past_key_values = None,
mamba_inference_params = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
calc_logits_for_entire_prompt (`bool`, *optional*):
Whether or not to calculate the logits for the entire prompt, or just the last token. Only last token
logits are needed for generation, and calculating them only for that token can save memory,
which becomes pretty significant for long sequences.
Returns:
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
fla_past_key_values=fla_past_key_values,
mamba_inference_params=mamba_inference_params,
return_dict=return_dict,
)
hidden_states = outputs[0]
if calc_logits_for_entire_prompt:
logits = self.lm_head(hidden_states)
else:
logits = self.lm_head(hidden_states[..., -1:, :])
logits = logits / self.lm_head.weight.norm(p=2, dim=1)
logits = logits.float()
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def get_init_cache(self, max_seqlen, batch_size=1):
past_key_values = AttentionDynamicCache(
self.config, batch_size, self.dtype, device=self.device, layer_type=self.config.layer_type
)
mamba_inference_params = InferenceParams(max_seqlen=max_seqlen, max_batch_size=batch_size)
fla_past_key_values = fla_cache.from_legacy_cache(None)
return past_key_values, fla_past_key_values, mamba_inference_params
def init_cuda_graph_generation(
self,
max_new_tokens=128,
batch_size=1,
device=None,
):
"""
Initialize CUDA graph for generation with proper cache handling and warmup.
This function should be called once before generation to set up the graph.
Args:
max_new_tokens: Maximum number of new tokens to generate
batch_size: Batch size for generation
device: Device to use (defaults to model device)
Returns:
generation_state: Dictionary containing all necessary state for generation
"""
if device is None:
device = next(self.parameters()).device
self.eval()
# Initialize caches
max_seqlen = max_new_tokens + 2048 + self.config.num_memory_tokens # Add buffer for input
past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache(
max_seqlen=max_seqlen, batch_size=batch_size
)
# Initialize KV caches for all modules
for module in self.modules():
if hasattr(module, 'init_kv_cache'):
module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen)
with torch.no_grad():
# Warmup runs
dummy_input = torch.ones((batch_size, 10), dtype=torch.long, device=device)
for _ in range(10):
self(dummy_input)
# Prepare static tensors for CUDA graph
static_current_input = torch.zeros((batch_size, 1), dtype=torch.long, device=device)
static_position_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=device)
static_logits = torch.zeros((batch_size, self.config.vocab_size), device=device)
# Set up for graph capture
self.model.has_previous_state = True
if mamba_inference_params is not None:
mamba_inference_params.seqlen_offset = 1
# Warmup runs for graph capture
for _ in range(10):
model_kwargs_warmup = {
'input_ids': static_current_input,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'past_key_values': past_key_values,
'use_cache': True,
'position_ids': static_position_ids,
}
warmup_outputs = self(**model_kwargs_warmup)
# Capture CUDA graph
generation_graph = CUDAGraph()
with torch.cuda.graph(generation_graph):
model_kwargs_graph = {
'input_ids': static_current_input,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'past_key_values': past_key_values,
'use_cache': True,
'position_ids': static_position_ids,
}
graph_outputs = self(**model_kwargs_graph)
static_logits.copy_(graph_outputs.logits[:, -1, :])
if fla_past_key_values is not None:
fla_past_key_values.reset()
if mamba_inference_params is not None:
mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size)
for key in mamba_inference_params.key_value_memory_dict:
conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key]
conv_state.zero_()
ssm_state.zero_()
for module in self.modules():
if hasattr(module, 'reset_kv_cache'):
module.reset_kv_cache()
self.model.has_previous_state = False
# Return generation state
generation_state = {
'generation_graph': generation_graph,
'static_current_input': static_current_input,
'static_position_ids': static_position_ids,
'static_logits': static_logits,
'past_key_values': past_key_values,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'max_seqlen': max_seqlen,
'batch_size': batch_size,
'device': device,
}
return generation_state
def generate_with_cuda_graph(
self,
input_ids,
generation_state,
max_new_tokens=128,
temperature=1.0,
top_k=0,
top_p=0.9,
eos_token_id=None,
verbose=False,
profiling=False,
):
"""
Generate text using pre-initialized CUDA graph state.
Args:
input_ids: Input token IDs tensor of shape (batch_size, seq_len)
generation_state: State dictionary returned by init_cuda_graph_generation
max_new_tokens: Maximum number of new tokens to generate
temperature: Sampling temperature (0 for greedy)
top_k: Top-k filtering (0 to disable)
top_p: Top-p filtering (1.0 to disable)
eos_token_id: End-of-sequence token ID
pad_token_id: Padding token ID
verbose: Whether to print generated tokens
profiling: Whether to return timing information
Returns:
generated_ids: Tensor of shape (batch_size, input_len + generated_len)
or decode_latency if profiling=True
"""
self.eval()
batch_size = input_ids.shape[0]
device = input_ids.device
# Extract state
generation_graph = generation_state['generation_graph']
static_current_input = generation_state['static_current_input']
static_position_ids = generation_state['static_position_ids']
static_logits = generation_state['static_logits']
past_key_values = generation_state['past_key_values']
fla_past_key_values = generation_state['fla_past_key_values']
mamba_inference_params = generation_state['mamba_inference_params']
with torch.no_grad():
if mamba_inference_params.seqlen_offset == 0:
if fla_past_key_values is not None:
fla_past_key_values.reset()
if mamba_inference_params is not None:
mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size)
for key in mamba_inference_params.key_value_memory_dict:
conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key]
conv_state.zero_()
ssm_state.zero_()
for module in self.modules():
if hasattr(module, 'reset_kv_cache'):
module.reset_kv_cache()
self.model.has_previous_state = False
# Prefill phase - process input sequence
position_ids = torch.arange(
self.config.num_memory_tokens + input_ids.shape[1], dtype=torch.long, device=device
).unsqueeze(0).expand(batch_size, -1)
else:
# Prefill phase - process input sequence
position_ids = torch.arange(
mamba_inference_params.seqlen_offset, mamba_inference_params.seqlen_offset + input_ids.shape[1], dtype=torch.long, device=device
).unsqueeze(0).expand(batch_size, -1)
current_input = input_ids
model_kwargs = {
'input_ids': current_input,
'past_key_values': past_key_values,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'use_cache': True,
'position_ids': position_ids,
}
if profiling:
torch.cuda.synchronize()
t1 = time.time()
# Forward pass for prefill
outputs = self(**model_kwargs)
if mamba_inference_params is not None:
if mamba_inference_params.seqlen_offset == 0:
mamba_inference_params.seqlen_offset = current_input.shape[1] + self.config.num_memory_tokens
else:
mamba_inference_params.seqlen_offset += current_input.shape[1]
static_position_ids.fill_(position_ids[0, -1])
logits = outputs.logits[:, -1, :] # (batch_size, vocab_size)
generated_tokens = []
# Generation loop using CUDA graph replay
for step in range(max_new_tokens):
# Sample next token using current logits
if temperature == 0:
next_token = torch.argmax(logits, dim=-1, keepdim=True)
else:
next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p)
generated_tokens.append(next_token)
# Check for EOS
if not profiling and eos_token_id is not None and (next_token == eos_token_id).all():
if verbose:
print("\nEOS reached")
break
# Update static tensors for graph replay
static_current_input.copy_(next_token)
static_position_ids.add_(1)
# Replay the captured graph
generation_graph.replay()
if mamba_inference_params is not None:
mamba_inference_params.seqlen_offset += 1
logits = static_logits.clone()
generated_ids = torch.cat([input_ids] + generated_tokens, dim=1)
if profiling:
torch.cuda.synchronize()
t2 = time.time()
decode_latency = t2 - t1
return generated_ids, decode_latency
return generated_ids
def generate_with_cache(
self,
input_ids,
max_new_tokens=128,
temperature=1.0,
top_k=0,
top_p=0.9,
eos_token_id=None,
verbose=False,
):
"""
Generate text using the hybrid model with proper cache handling using pre-initialized CUDA graph state.
Args:
input_ids: Input token IDs tensor of shape (batch_size, seq_len)
max_new_tokens: Maximum number of new tokens to generate
temperature: Sampling temperature (0 for greedy)
top_k: Top-k filtering (0 to disable)
top_p: Top-p filtering (1.0 to disable)
eos_token_id: End-of-sequence token ID
verbose: Whether to print generated tokens
Returns:
generated_ids: Tensor of shape (batch_size, input_len + generated_len)
"""
self.eval()
batch_size = input_ids.shape[0]
device = input_ids.device
with torch.no_grad():
max_seqlen = input_ids.shape[1] + max_new_tokens + self.config.num_memory_tokens
past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache(max_seqlen=max_seqlen, batch_size=batch_size)
for module in self.model.modules():
if hasattr(module, 'init_kv_cache'):
module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen)
# Prefill phase - process input sequence
current_input = input_ids
position_ids = torch.arange(
self.model.config.num_memory_tokens + current_input.shape[1], dtype=torch.long, device=device
).unsqueeze(0).expand(batch_size, -1)
model_kwargs = {
'input_ids': current_input,
'past_key_values': past_key_values,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'use_cache': True,
'position_ids': position_ids,
}
outputs = self(**model_kwargs)
# past_key_values, fla_past_key_values, mamba_inference_params = outputs.past_key_values
mamba_inference_params.seqlen_offset = current_input.shape[1] + self.model.config.num_memory_tokens
logits = outputs.logits[:, -1, :] # (batch_size, vocab_size)
generated_tokens = []
# Generation loop
for step in range(max_new_tokens):
# Sample next token
if temperature == 0:
next_token = torch.argmax(logits, dim=-1, keepdim=True)
else:
next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p)
generated_tokens.append(next_token)
# Check for EOS
if eos_token_id is not None and (next_token == eos_token_id).all():
if verbose:
print("\nEOS reached")
break
current_input = next_token # Shape: (batch_size, 1)
# Update position_ids for decoding
if position_ids is not None:
position_ids = torch.full(
(batch_size, 1),
position_ids[0, -1] + 1,
dtype=torch.long,
device=device
)
# Forward pass for next token
model_kwargs = {
'input_ids': current_input,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'past_key_values': past_key_values,
'use_cache': True,
'position_ids': position_ids,
}
outputs = self(**model_kwargs)
mamba_inference_params.seqlen_offset += 1
logits = outputs.logits[:, -1, :]
generated_ids = torch.cat([input_ids] + generated_tokens, dim=1)
return generated_ids
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if self.config.num_memory_tokens > 0:
attention_mask = torch.cat([torch.ones(input_ids.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)
### Note that KV cache is disable when using model.generate; Please use model.generate_with_cuda_graph or model.generate_with_cache instead.
past_key_values = None
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None:
if input_ids.shape[1] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
inputs_embeds_new = self.model.embed_tokens(input_ids)
model_inputs = {"inputs_embeds": torch.cat([inputs_embeds, inputs_embeds_new], dim=1)}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def sample_token(logits, temperature=1.0, top_k=0, top_p=0.9):
"""
Sample a token from logits with temperature, top-k, and top-p filtering.
Args:
logits: Tensor of shape (batch_size, vocab_size)
temperature: Sampling temperature
top_k: Top-k filtering (0 to disable)
top_p: Top-p filtering (1.0 to disable)
Returns:
next_token: Tensor of shape (batch_size, 1)
"""
if temperature == 0:
return torch.argmax(logits, dim=-1, keepdim=True)
logits = logits / temperature
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits.masked_fill_(indices_to_remove, float('-inf'))
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
logits.masked_fill_(indices_to_remove, float('-inf'))
probs = F.softmax(logits, dim=-1)
return torch.multinomial(probs, num_samples=1)
|