File size: 82,863 Bytes
9da72c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f878ee
9da72c7
 
0f878ee
9da72c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f878ee
9da72c7
0f878ee
 
9da72c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
# coding=utf-8
# Copyright 2025 NVIDIA Corporation. All rights reserved.

""" PyTorch Nemotron-Flash model."""
import inspect
import math
import copy
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import time
import numpy as np
import os

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

torch._inductor.config.max_autotune_gemm_backends = ["aten"]

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (
    MoeCausalLMOutputWithPast,
    MoeModelOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.generation import GenerationMixin

try:
    from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
    from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
except ImportError:
    pass

from transformers.utils import (
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)
from .configuration_nemotron_flash import NemotronFlashConfig

import math

from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)

from einops import rearrange, repeat, reduce, pack, unpack

from .fused_mha_with_cache import fused_mha_interface

from .mamba2 import Mamba2
from mamba_ssm.utils.generation import InferenceParams
from .delta_net import Cache as fla_cache
from .delta_net import DeltaNet
import torch._dynamo
torch._dynamo.config.suppress_errors = True

from torch.cuda import CUDAGraph

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "NemotronFlashConfig"


class NemotronFlashRMSNorm(nn.Module):

    def __init__(self, hidden_size, learnable_weight=True, eps=1e-6):
        super().__init__()
        if learnable_weight:
            self.weight = nn.Parameter(torch.ones(hidden_size))
        else:
            self.weight = None
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        
        if self.weight is not None:
            return self.weight * hidden_states.to(input_dtype)
        else:
            return hidden_states.to(input_dtype)

class LlamaRotaryEmbedding(nn.Module):
    def __init__(self, config, dim, base=10000, device=None, scaling_factor=1.0):
        super().__init__()
        self.scaling_factor = scaling_factor
        self.dim = dim
        self.base = base
        self.config = config
        
        self.rope_type = config.rope_type
        
        self.factor = 2
        
        max_position_embeddings = self.config.max_position_embeddings

        if config.rope_type is None or config.rope_type == "default":
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
            self.max_seq_len_cached = max_position_embeddings

        elif config.rope_type == 'ntk':
            assert self.config.orig_max_position_embeddings is not None
            orig_max_position_embeddings = self.config.orig_max_position_embeddings
            
            base = base * ((self.factor * max_position_embeddings / orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
            
            self.max_seq_len_cached = orig_max_position_embeddings
            
        elif config.rope_type == 'dynamic_ntk':
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
            self.original_inv_freq = inv_freq
            self.max_seq_len_cached = self.config.orig_max_position_embeddings
                
        else:
            raise ValueError(f"Not support rope_type: {config.rope_type}")

        self.register_buffer("inv_freq", inv_freq, persistent=False)
        

    def _dynamic_frequency_update(self, position_ids, device):
        """
        dynamic RoPE layers should recompute `inv_freq` in the following situations:
        1 - growing beyond the cached sequence length (allow scaling)
        2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
        """
        
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len_cached:  # growth
            base = self.base * ((self.factor * seq_len / self.config.orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
            
            self.register_buffer("inv_freq", inv_freq, persistent=False)
            self.max_seq_len_cached = seq_len

        if seq_len < self.config.orig_max_position_embeddings and self.max_seq_len_cached > self.config.orig_max_position_embeddings:  # reset
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len_cached = self.config.orig_max_position_embeddings
        

    @torch.no_grad()
    def forward(self, x, position_ids):
        if self.rope_type == 'dynamic_ntk':
            self._dynamic_frequency_update(position_ids, device=x.device)
            
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors."""
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    if q is not None:
        q_embed = (q * cos) + (rotate_half(q) * sin)

    else:
        q_embed = None
    
    if k is not None:
        k_embed = (k * cos) + (rotate_half(k) * sin)
    else:
        k_embed = None
    return q_embed, k_embed    



def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)



class AttentionDynamicCache(DynamicCache):

    def __init__(self, config, batch_size, dtype=torch.float16, device=None, layer_type=None):
        self.dtype = dtype

        self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
        self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:

        if self.key_cache[layer_idx].shape[-1] == 0:
            self.key_cache[layer_idx] = key_states
            self.value_cache[layer_idx] = value_states
        else:
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]

    def get_seq_length(self, layer_idx=None) -> int:
        if layer_idx is None:
            max_key_len = max(cache.shape[-2] for cache in self.key_cache)
            return max_key_len

        if self.key_cache[layer_idx].shape[-1] == 0:
            return 0

        return self.key_cache[layer_idx].shape[-2]


# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention
class NemotronFlashAttention(nn.Module):

    def __init__(self, config: NemotronFlashConfig, layer_idx: Optional[int] = None, input_hidden_size=None, output_hidden_size=None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.attn_hidden_size if config.attn_hidden_size > 0 else config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta

        self.kq_head_dim = config.kq_head_dim if config.kq_head_dim > 0 else self.head_dim
        self.v_head_dim = config.v_head_dim if config.v_head_dim > 0 else self.head_dim

        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.is_causal = True
        self.attention_dropout = config.attention_dropout
        
        if (self.head_dim * self.num_heads) != self.hidden_size and self.kq_head_dim == self.head_dim:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )

        self.q_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_heads * self.kq_head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.kq_head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.v_head_dim, bias=False)

        if output_hidden_size is None:
            output_hidden_size = self.hidden_size

        self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, output_hidden_size, bias=False)

        if self.config.kq_norm == "rms":
            self.k_norm = NemotronFlashRMSNorm(self.kq_head_dim)
            self.q_norm = NemotronFlashRMSNorm(self.kq_head_dim)
        elif self.config.kq_norm == "none":
            self.k_norm = None
            self.q_norm = None
        else:
            raise NotImplementedError(f"Unknown kq_norm: {self.config.kq_norm}")

        if self.config.rope:
            self._init_rope()
            
    def _init_rope(self):
        self.rotary_emb = LlamaRotaryEmbedding(
            config=self.config,
            dim=self.kq_head_dim,
            base=self.rope_theta,
            device=torch.device("cuda"),
            ) 

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Cache] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            use_swa=False,
            query_states = None,
            key_states=None,
            value_states=None,
            **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        raise NotImplementedError("NemotronFlashAttention is an abstract class. Use one of the subclasses.")



def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )

# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2
class NemotronFlashFlashAttention2(NemotronFlashAttention):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
            self,
            hidden_states: torch.Tensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Cache] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            use_swa=False,
            query_states = None,
            key_states=None,
            value_states=None,
            **kwargs,
    ):  
            
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

            # overwrite attention_mask with padding_mask
            attention_mask = kwargs.pop("padding_mask")

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()

        if self.q_norm is not None:
            query_states = self.q_norm(query_states)
            
        if self.config.rope:
            cos, sin = self.rotary_emb(hidden_states, position_ids)
            query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)

        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)
            
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)

        if self.k_norm is not None:
            key_states = self.k_norm(key_states)
        
        if self.config.rope:
            _, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)

        
        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_seq_length(self.layer_idx)

        use_sliding_windows = (
                _flash_supports_window_size
                and getattr(self.config, "sliding_window", None) is not None
                and kv_seq_len > self.config.sliding_window
                and use_swa
        )

        if not _flash_supports_window_size:
            logger.warning_once(
                "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
                " make sure to upgrade flash-attn library."
            )

        swa_processed_flag = False
        if past_key_value is not None and use_cache:
            kv_layer_idx = self.layer_idx

            cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0
            
            if (
                    getattr(self.config, "sliding_window", None) is not None
                    and kv_seq_len > self.config.sliding_window
                    and cache_has_contents
                    and use_swa
            ):              
                slicing_tokens = 1 - self.config.sliding_window

                past_key = past_key_value[kv_layer_idx][0]
                past_value = past_key_value[kv_layer_idx][1]
                
                past_key = past_key[:, :, slicing_tokens:, :].contiguous()
                past_value = past_value[:, :, slicing_tokens:, :].contiguous()

                past_key_value.key_cache[kv_layer_idx] = past_key
                past_key_value.value_cache[kv_layer_idx] = past_value
                                                        
                if attention_mask is not None:
                    attention_mask = attention_mask[:, slicing_tokens:]
                    attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
                
                swa_processed_flag = True
                            
            key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx)

        key_states_no_repeat = key_states
        value_states_no_repeat = value_states

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        # Reashape to the expected shape for Flash Attention
        query_states = query_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
        key_states = key_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
        value_states = value_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
                
        attn_output = self._flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            dropout=dropout_rate,
            use_sliding_windows=use_sliding_windows and not swa_processed_flag,
        )

        v_dim = value_states.shape[-2] * value_states.shape[-1]
        attn_output = attn_output.reshape(-1, q_len, v_dim).contiguous()
            
        attn_output = self.o_proj(attn_output)
        
        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)

    def _flash_attention_forward(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            query_length,
            dropout=0.0,
            softmax_scale=None,
            use_sliding_windows=False,
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`int`, *optional*):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
            use_sliding_windows (`bool`, *optional*):
                Whether to activate sliding window attention.
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
            causal = self.is_causal and query_length != 1
                    
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            if not use_sliding_windows:
                attn_output_unpad = flash_attn_varlen_func(
                    query_states,
                    key_states,
                    value_states,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_q=max_seqlen_in_batch_q,
                    max_seqlen_k=max_seqlen_in_batch_k,
                    dropout_p=dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                )
            else:
                attn_output_unpad = flash_attn_varlen_func(
                    query_states,
                    key_states,
                    value_states,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_q=max_seqlen_in_batch_q,
                    max_seqlen_k=max_seqlen_in_batch_k,
                    dropout_p=dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                    window_size=(self.config.sliding_window, self.config.sliding_window),
                )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            if not use_sliding_windows:
                attn_output = flash_attn_func(
                    query_states,
                    key_states,
                    value_states,
                    dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                )
            else:
                attn_output = flash_attn_func(
                    query_states,
                    key_states,
                    value_states,
                    dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                    window_size=(self.config.sliding_window, self.config.sliding_window),
                )

        return attn_output

    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
                
        # On the first iteration we need to properly re-create the padding mask
        # by slicing it on the proper place
        if kv_seq_len != attention_mask.shape[-1]:
            attention_mask_num_tokens = attention_mask.shape[-1]
            attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]

        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)

        if not self.training and not type(key_layer) == torch.Tensor:  ## this is for handling Mamba2 with output type <class 'mamba_ssm.ops.triton.layernorm_gated.tTensor'>
            key_layer = torch.tensor(key_layer.clone())
            value_layer = torch.tensor(value_layer.clone())
            query_layer = torch.tensor(query_layer.clone())
        
        key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
        value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)

        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )



class NemotronFlashSDPAAttention(nn.Module):

    def __init__(self, config, layer_idx: int, reuse_kv=False):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True

        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=False
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=False
        )

        self.sliding_window = self.config.sliding_window if self.layer_idx not in self.config.global_attn_idx else None

        self.rotary_emb = NemotronFlashRotaryEmbedding(config=config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor],
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        **kwargs,
    ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = self.rotary_emb(hidden_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            past_seen_tokens = past_key_value.get_seq_length()
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=hidden_states.device
            )
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
    
        attention_interface = ALL_ATTENTION_FUNCTIONS['flash_attention_2']

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            sliding_window=self.sliding_window,
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)

        return attn_output, attn_weights, past_key_value, (key_states, value_states)


class NemotronFlashRotaryEmbedding(nn.Module):
    def __init__(self, config, device=None):
        super().__init__()

        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


## Interface to use TRTLLM AutoDeploy attention kernel, which enables CUDA Graph capture
class NemotronFlashFusedMHA(NemotronFlashAttention):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        
        self.fused_mha_interface = fused_mha_interface
        
    def init_kv_cache(self, max_batch_size, max_seq_len, page_size=-1):
        if hasattr(self, 'k_cache'):
            del self.k_cache
            del self.v_cache
            
            if hasattr(self, 'page_table') and self.page_table is not None:
                del self.page_table
            
            import gc
            gc.collect()
                
            torch.cuda.empty_cache()
        
        if page_size is not None and page_size > 0:
            batch_max_pages = (max_seq_len + page_size - 1) // page_size
            cache_max_pages = (max_batch_size * max_seq_len + page_size - 1) // page_size
            self.k_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight)
            self.v_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight)

            self.page_table = torch.zeros(max_batch_size, batch_max_pages, device=self.q_proj.weight.device, dtype=torch.int32)
        else:
            self.k_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight)
            self.v_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight)
            
            self.page_table = None
        
        self.max_seq_len = max_seq_len
    

    def reset_kv_cache(self):
        self.k_cache = self.k_cache.zero_()
        self.v_cache = self.v_cache.zero_()
        
        if self.page_table is not None:
            self.page_table = self.page_table.zero_()
        
        
    def forward(
            self,
            hidden_states: torch.Tensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Cache] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            use_swa=False,
            query_states = None,
            key_states=None,
            value_states=None,
            **kwargs,
    ):     

        if not hasattr(self, 'k_cache'):
            self.init_kv_cache(max_batch_size=1, max_seq_len=8000)
        
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()

        if self.q_norm is not None:
            query_states = self.q_norm(query_states)
            
        if self.config.rope:
            cos, sin = self.rotary_emb(hidden_states, position_ids)
            query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)
         
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)

        if self.k_norm is not None:
            key_states = self.k_norm(key_states)
        
        if self.config.rope:
            _, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)

        key_states_no_repeat = key_states
        value_states_no_repeat = value_states
        
        query_states = query_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
        key_states = key_states.transpose(1, 2)  # (batch, slen, num_kv_heads, head_dim)
        value_states = value_states.transpose(1, 2)  # (batch, slen, num_kv_heads, head_dim)
        
        if self.k_cache.device != query_states.device:
            self.k_cache = self.k_cache.to(query_states)
            self.v_cache = self.v_cache.to(query_states)

        attn_output = self.fused_mha_interface(
            query_states,
            key_states,
            value_states,
            k_cache=self.k_cache,
            v_cache=self.v_cache,
            page_table=self.page_table,
            max_seq_len=self.max_seq_len,
            position_ids=position_ids,
        )

        v_dim = query_states.shape[-2] * value_states.shape[-1]
        attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous()
        
        attn_output = self.o_proj(attn_output)
                    
        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)
        

JAMBA_ATTENTION_CLASSES = {
    "flash_attention_2": NemotronFlashFlashAttention2,
    "fused_mha": NemotronFlashFusedMHA,
    "sdpa": NemotronFlashSDPAAttention,
}

class NemotronFlashMLP(nn.Module):
    def __init__(self, config: NemotronFlashConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.act_fn_name = config.mlp_hidden_act
        self.act_fn = ACT2FN[self.act_fn_name]
        
        if config.ffn_expand_ratio is not None:
            self.ffn_dim = int(config.ffn_expand_ratio * config.hidden_size) // 128 * 128
        else:
            self.ffn_dim = config.intermediate_size
        
        self.hidden_dim = config.hidden_size
        
        self.layer_idx = layer_idx

        if self.act_fn_name == "silu":
            self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
        self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        

    def forward(self, x):
        if self.act_fn_name == "silu":
            output = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        elif self.act_fn_name == "relu2":
            output  = self.down_proj(self.act_fn(self.up_proj(x)))
        else:
            raise NotImplementedError(f"No such hidden_act: {self.act_fn_name}")

        return output

    
class NemotronFlashAttentionDecoderLayer(nn.Module):
    def __init__(self, config: NemotronFlashConfig, layer_idx: int,):
        super().__init__()

        self.config = config
        
        self.layer_idx = layer_idx

        self.self_attn = JAMBA_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx)

        if self.config.intermediate_size > 0:
            self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
            self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.ffn = None
            self.pre_ffn_layernorm = None

        self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            use_swa=False,
            **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]:
            position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
                
        residual = hidden_states

        if self.input_layernorm is not None:
            hidden_states = self.input_layernorm(hidden_states)

        hidden_states, self_attn_weights, present_key_value, current_kv = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            use_swa=use_swa,
        )
        
        hidden_states = residual + hidden_states
        
        if self.ffn is not None:
            residual = hidden_states
            if self.pre_ffn_layernorm is not None:
                hidden_states = self.pre_ffn_layernorm(hidden_states)
            hidden_states = self.ffn(hidden_states)

            hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        outputs += (current_kv,)

        return outputs



class FFNDecoderLayer(nn.Module):
    def __init__(self, config: NemotronFlashConfig, layer_idx: int):
        super().__init__()

        self.config = config
        self.layer_idx = layer_idx
        self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
        self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
            
    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            use_swa=False,
            **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        residual = hidden_states
        if self.pre_ffn_layernorm is not None:
            hidden_states = self.pre_ffn_layernorm(hidden_states)
        hidden_states = self.ffn(hidden_states)

        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (None,)

        if use_cache:
            outputs += (None,)

        return outputs


class NemotronFlashMambaDecoderLayer(nn.Module):
    def __init__(self, config: NemotronFlashConfig, layer_idx: int):
        super().__init__()

        self.config = config
        self.layer_idx = layer_idx

        self.mamba = Mamba2(config=config, layer_idx=layer_idx)
        
        self.intermediate_size = config.intermediate_size
        if self.intermediate_size > 0:
            self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
            self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.ffn = None
            self.pre_ffn_layernorm = None

        self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
                

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[AttentionDynamicCache] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            use_swa=False,
            mamba_inference_params=None,
            **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )
        
        if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]:
            position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)

        residual = hidden_states
        
        if self.input_layernorm is not None:
            hidden_states = self.input_layernorm(hidden_states)

        hidden_states, present_key_value = self.mamba(
            hidden_states=hidden_states,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            inference_params=mamba_inference_params,
        )

        attn_key_value = None

        hidden_states = residual + hidden_states
                
        if self.intermediate_size > 0:
            residual = hidden_states
            
            if self.pre_ffn_layernorm is not None:
                hidden_states = self.pre_ffn_layernorm(hidden_states)
                
            hidden_states = self.ffn(hidden_states)

            hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if use_cache:
            outputs += (present_key_value,)

        outputs += (attn_key_value,)

        return outputs

    def _get_past_seqlen(self, past_key_value, seqlen):
        if past_key_value is None:
            return seqlen
        past_seqlen = past_key_value.get_seq_length(self.layer_idx)

        if past_seqlen == 0:
            return seqlen

        return past_seqlen


    
class NemotronFlashHybridDecoderLayer(nn.Module):
    def __init__(self, config: NemotronFlashConfig, layer_idx: int):
        super().__init__()

        self.config = config
        
        self.layer_idx = layer_idx
                
        if config.hybrid_decoder_layer == 'mamba':
            self.mamba = Mamba2(config=config, layer_idx=layer_idx)
        if config.hybrid_decoder_layer == 'deltanet':
            if config.layer_types is not None:
                deltanet_idx = sum(1 for i in range(layer_idx) if config.layer_types[i] == 'deltanet')
            else:
                deltanet_idx = layer_idx
            
            self.gla = DeltaNet(hidden_size=config.hidden_size, num_heads=config.num_attention_heads, layer_idx=deltanet_idx, config=self.config)
        else:
            raise ValueError(f"Not supported: {config.hybrid_decoder_layer}")
    
        self.config = config

        if self.config.intermediate_size > 0:
            self.ffn = NemotronFlashMLP(config, layer_idx=layer_idx)
            self.pre_ffn_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.ffn = None
            self.pre_ffn_layernorm = None

        self.input_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
            

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[AttentionDynamicCache] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            fla_past_key_values = None,
            mamba_inference_params = None,
            use_swa=False,
            **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        if self.config.hybrid_decoder_layer == 'mamba':
            hybrid_op_hidden_states, mamba_present_key_value = self.mamba(
                hidden_states=hidden_states,
                past_key_value=past_key_value,
                attention_mask=attention_mask,
                inference_params=mamba_inference_params,
            )
            
        else:
            hybrid_op_hidden_states, _, fla_past_key_values = self.gla(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                past_key_values=fla_past_key_values,
                use_cache=use_cache,
            )
        
        self_attn_weights = self_attn_present_key_value = current_kv = None

        hidden_states = residual + hybrid_op_hidden_states
            
        if self.ffn is not None:
            residual = hidden_states
            hidden_states = self.pre_ffn_layernorm(hidden_states)

            hidden_states = self.ffn(hidden_states)

            hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (self_attn_present_key_value,)

        outputs += (current_kv,)
        

        return outputs        


# Adapted from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel
class NemotronFlashPreTrainedModel(PreTrainedModel):
    config_class = NemotronFlashConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["NemotronFlashAttentionDecoderLayer", "NemotronFlashMambaDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


# Adapted from transformers.models.mistral.modeling_mistral.MistralModel
class NemotronFlashModel(NemotronFlashPreTrainedModel):

    def __init__(self, config: NemotronFlashConfig):
        super().__init__(config)

        config.attn_implementation = config.attn_implementation_new
        config._attn_implementation = config.attn_implementation_new

        self.config = config
        
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)

        decoder_layers = []
                        
        layer_type = []
        for i in range(config.num_hidden_layers):                        
            if config.layer_types[i] in ['deltanet']:
                layer_type.append('m')
                config_new = copy.deepcopy(config)
                config_new.hybrid_decoder_layer = 'deltanet'
                decoder_layer = NemotronFlashHybridDecoderLayer(config_new, layer_idx=i)
            elif config.layer_types[i] in ['m', 'm2']:
                layer_type.append('m')
                decoder_layer = NemotronFlashMambaDecoderLayer(config, layer_idx=i)
            elif config.layer_types[i] == 'a':
                layer_type.append('a')
                decoder_layer = NemotronFlashAttentionDecoderLayer(config, layer_idx=i)
            elif config.layer_types[i] == 'f':
                layer_type.append('a')
                decoder_layer = FFNDecoderLayer(config, layer_idx=i)
            else:
                raise ValueError(f"Unsupported layer type {config.layer_types[i]}")
            
            decoder_layers.append(decoder_layer)
            
        config.layer_type = layer_type

        if config.sliding_window is not None:
            self.sliding_window = config.sliding_window
            self.global_attn_idx = config.global_attn_idx
        else:
            self.sliding_window = None
            self.global_attn_idx = None

        self.layers = nn.ModuleList(decoder_layers)

        self._attn_implementation = config.attn_implementation
        
        self.final_layernorm = NemotronFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        if self.config.num_memory_tokens > 0:
            self.memory_tokens = nn.Parameter(torch.randn(self.config.num_memory_tokens, self.config.hidden_size))
            
        self.gradient_checkpointing = False

        self.post_init()

        self.has_previous_state = False


    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value


    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[Union[List[torch.FloatTensor], AttentionDynamicCache]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            fla_past_key_values = None,
            mamba_inference_params = None,
    ) -> Union[Tuple, MoeModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            if self.config.num_memory_tokens > 0 and past_key_values is not None and not self.has_previous_state:
                position_ids = position_ids.view(-1, seq_length + self.config.num_memory_tokens).long()
            else:
                position_ids = position_ids.view(-1, seq_length).long()
                
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
            
        ori_b, ori_n = inputs_embeds.shape[0], inputs_embeds.shape[1]

        if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state):
            mem = repeat(self.memory_tokens, 'n d -> b n d', b = inputs_embeds.shape[0]) # prepend the memory to every segment of m by repeating the memory tokens
            inputs_embeds, mem_packed_shape = pack((mem, inputs_embeds), 'b * d')      

            if position_ids is not None and position_ids.shape[1] != inputs_embeds.shape[1]:
                position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0)

            if attention_mask is not None and attention_mask.shape[1] < inputs_embeds.shape[1]:
                assert attention_mask.shape[1] + self.config.num_memory_tokens == inputs_embeds.shape[1]
                attention_mask = torch.cat([torch.ones(inputs_embeds.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)
            
   
        if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
            is_padding_right = attention_mask[:, -1].sum().item() != batch_size
            if is_padding_right:
                raise ValueError(
                    "You are attempting to perform batched generation with padding_side='right'"
                    " this may lead to unexpected behaviour for Flash Attention version of NemotronFlash. Make sure to "
                    " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
                )
                
        attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None

        hidden_states = inputs_embeds

        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for i, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    use_swa=self.sliding_window is not None and i not in self.global_attn_idx,
                    fla_past_key_values=fla_past_key_values,
                    mamba_inference_params=mamba_inference_params,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        if self.final_layernorm is not None:
            hidden_states = self.final_layernorm(hidden_states)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state):
            mem, hidden_states = unpack(hidden_states, mem_packed_shape, 'b * d')
            hidden_states = hidden_states[:, :ori_n, :]

        if past_key_values is not None and not self.has_previous_state:
            self.has_previous_state = True

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if (fla_past_key_values is None and mamba_inference_params is None) else (past_key_values, fla_past_key_values, mamba_inference_params),
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->NemotronFlash
class NemotronFlashForCausalLM(NemotronFlashPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: NemotronFlashConfig):
        super().__init__(config)
        self.config = config
        self.model = NemotronFlashModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.post_init()
    
    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model
        
    @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            calc_logits_for_entire_prompt: Optional[bool] = True,
            fla_past_key_values = None,
            mamba_inference_params = None,
    ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            calc_logits_for_entire_prompt (`bool`, *optional*):
                Whether or not to calculate the logits for the entire prompt, or just the last token. Only last token
                logits are needed for generation, and calculating them only for that token can save memory,
                which becomes pretty significant for long sequences.

        Returns:
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            fla_past_key_values=fla_past_key_values,
            mamba_inference_params=mamba_inference_params,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        if calc_logits_for_entire_prompt:
            logits = self.lm_head(hidden_states)
        else:
            logits = self.lm_head(hidden_states[..., -1:, :])

        logits = logits / self.lm_head.weight.norm(p=2, dim=1)
                        
        logits = logits.float()

        loss = None
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
                 
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return MoeCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def get_init_cache(self, max_seqlen, batch_size=1):
        past_key_values = AttentionDynamicCache(
            self.config, batch_size, self.dtype, device=self.device, layer_type=self.config.layer_type
        )

        mamba_inference_params = InferenceParams(max_seqlen=max_seqlen, max_batch_size=batch_size)

        fla_past_key_values = fla_cache.from_legacy_cache(None)    

        return past_key_values, fla_past_key_values, mamba_inference_params
    
    
    def init_cuda_graph_generation(
        self,
        max_new_tokens=128,
        batch_size=1,
        device=None,
    ):
        """
        Initialize CUDA graph for generation with proper cache handling and warmup.
        This function should be called once before generation to set up the graph.
        
        Args:
            max_new_tokens: Maximum number of new tokens to generate
            batch_size: Batch size for generation
            device: Device to use (defaults to model device)
            
        Returns:
            generation_state: Dictionary containing all necessary state for generation
        """
        if device is None:
            device = next(self.parameters()).device
            
        self.eval()
        
        # Initialize caches
        max_seqlen = max_new_tokens + 2048 + self.config.num_memory_tokens  # Add buffer for input
        past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache(
            max_seqlen=max_seqlen, batch_size=batch_size
        )
        
        # Initialize KV caches for all modules
        for module in self.modules():
            if hasattr(module, 'init_kv_cache'):
                module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen)
        
        with torch.no_grad():
            # Warmup runs
            dummy_input = torch.ones((batch_size, 10), dtype=torch.long, device=device)
            for _ in range(10):
                self(dummy_input)
            
            # Prepare static tensors for CUDA graph
            static_current_input = torch.zeros((batch_size, 1), dtype=torch.long, device=device)
            static_position_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=device)
            static_logits = torch.zeros((batch_size, self.config.vocab_size), device=device)
            
            # Set up for graph capture
            self.model.has_previous_state = True
            if mamba_inference_params is not None:
                mamba_inference_params.seqlen_offset = 1
            
            # Warmup runs for graph capture
            for _ in range(10):
                model_kwargs_warmup = {
                    'input_ids': static_current_input,
                    'fla_past_key_values': fla_past_key_values,
                    'mamba_inference_params': mamba_inference_params,
                    'past_key_values': past_key_values,
                    'use_cache': True,
                    'position_ids': static_position_ids,
                }
                warmup_outputs = self(**model_kwargs_warmup)
            
            # Capture CUDA graph
            generation_graph = CUDAGraph()
            with torch.cuda.graph(generation_graph):
                model_kwargs_graph = {
                    'input_ids': static_current_input,
                    'fla_past_key_values': fla_past_key_values,
                    'mamba_inference_params': mamba_inference_params,
                    'past_key_values': past_key_values,
                    'use_cache': True,
                    'position_ids': static_position_ids,
                }
                graph_outputs = self(**model_kwargs_graph)
                static_logits.copy_(graph_outputs.logits[:, -1, :])

        if fla_past_key_values is not None:
            fla_past_key_values.reset()
        
        if mamba_inference_params is not None:
            mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size)
            for key in mamba_inference_params.key_value_memory_dict:
                conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key]
                conv_state.zero_()
                ssm_state.zero_()
        
        for module in self.modules():
            if hasattr(module, 'reset_kv_cache'):
                module.reset_kv_cache()
        
        self.model.has_previous_state = False

        # Return generation state
        generation_state = {
            'generation_graph': generation_graph,
            'static_current_input': static_current_input,
            'static_position_ids': static_position_ids,
            'static_logits': static_logits,
            'past_key_values': past_key_values,
            'fla_past_key_values': fla_past_key_values,
            'mamba_inference_params': mamba_inference_params,
            'max_seqlen': max_seqlen,
            'batch_size': batch_size,
            'device': device,
        }
        
        return generation_state
    
    def generate_with_cuda_graph(
        self,
        input_ids,
        generation_state,
        max_new_tokens=128,
        temperature=1.0,
        top_k=0,
        top_p=0.9,
        eos_token_id=None,
        verbose=False,
        profiling=False,
    ):
        """
        Generate text using pre-initialized CUDA graph state.
        
        Args:
            input_ids: Input token IDs tensor of shape (batch_size, seq_len)
            generation_state: State dictionary returned by init_cuda_graph_generation
            max_new_tokens: Maximum number of new tokens to generate
            temperature: Sampling temperature (0 for greedy)
            top_k: Top-k filtering (0 to disable)
            top_p: Top-p filtering (1.0 to disable)
            eos_token_id: End-of-sequence token ID
            pad_token_id: Padding token ID
            verbose: Whether to print generated tokens
            profiling: Whether to return timing information
            
        Returns:
            generated_ids: Tensor of shape (batch_size, input_len + generated_len)
            or decode_latency if profiling=True
        """
        self.eval()
        batch_size = input_ids.shape[0]
        device = input_ids.device
        
        # Extract state
        generation_graph = generation_state['generation_graph']
        static_current_input = generation_state['static_current_input']
        static_position_ids = generation_state['static_position_ids']
        static_logits = generation_state['static_logits']
        past_key_values = generation_state['past_key_values']
        fla_past_key_values = generation_state['fla_past_key_values']
        mamba_inference_params = generation_state['mamba_inference_params']
        
        with torch.no_grad():
            if mamba_inference_params.seqlen_offset == 0:
                if fla_past_key_values is not None:
                    fla_past_key_values.reset()
                
                if mamba_inference_params is not None:
                    mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size)
                    for key in mamba_inference_params.key_value_memory_dict:
                        conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key]
                        conv_state.zero_()
                        ssm_state.zero_()
                
                for module in self.modules():
                    if hasattr(module, 'reset_kv_cache'):
                        module.reset_kv_cache()
                
                self.model.has_previous_state = False
            
                # Prefill phase - process input sequence
                position_ids = torch.arange(
                    self.config.num_memory_tokens + input_ids.shape[1], dtype=torch.long, device=device
                ).unsqueeze(0).expand(batch_size, -1)

            else:
                # Prefill phase - process input sequence
                position_ids = torch.arange(
                    mamba_inference_params.seqlen_offset, mamba_inference_params.seqlen_offset + input_ids.shape[1], dtype=torch.long, device=device
                ).unsqueeze(0).expand(batch_size, -1)
            
            current_input = input_ids
            
            model_kwargs = {
                'input_ids': current_input,
                'past_key_values': past_key_values,
                'fla_past_key_values': fla_past_key_values,
                'mamba_inference_params': mamba_inference_params,
                'use_cache': True,
                'position_ids': position_ids,
            }
            
            if profiling:
                torch.cuda.synchronize()
                t1 = time.time()
            
            # Forward pass for prefill
            outputs = self(**model_kwargs)
            
            if mamba_inference_params is not None:
                if mamba_inference_params.seqlen_offset == 0:
                    mamba_inference_params.seqlen_offset = current_input.shape[1] + self.config.num_memory_tokens
                else:
                    mamba_inference_params.seqlen_offset += current_input.shape[1]

            static_position_ids.fill_(position_ids[0, -1])
            
            logits = outputs.logits[:, -1, :]  # (batch_size, vocab_size)
            generated_tokens = []
            
            # Generation loop using CUDA graph replay
            for step in range(max_new_tokens):
                # Sample next token using current logits
                if temperature == 0:
                    next_token = torch.argmax(logits, dim=-1, keepdim=True)
                else:
                    next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p)
                
                generated_tokens.append(next_token)
                
                # Check for EOS
                if not profiling and eos_token_id is not None and (next_token == eos_token_id).all():
                    if verbose:
                        print("\nEOS reached")
                    break
                
                # Update static tensors for graph replay
                static_current_input.copy_(next_token)
                static_position_ids.add_(1)
                
                # Replay the captured graph
                generation_graph.replay()
                
                if mamba_inference_params is not None:
                    mamba_inference_params.seqlen_offset += 1
                
                logits = static_logits.clone()
            
            generated_ids = torch.cat([input_ids] + generated_tokens, dim=1)
            
            if profiling:
                torch.cuda.synchronize()
                t2 = time.time()
                decode_latency = t2 - t1
                return generated_ids, decode_latency
            
            return generated_ids


    def generate_with_cache(
        self,
        input_ids,
        max_new_tokens=128,
        temperature=1.0,
        top_k=0,
        top_p=0.9,
        eos_token_id=None,
        verbose=False,
    ):
        """
        Generate text using the hybrid model with proper cache handling using pre-initialized CUDA graph state.
        
        Args:
            input_ids: Input token IDs tensor of shape (batch_size, seq_len)
            max_new_tokens: Maximum number of new tokens to generate
            temperature: Sampling temperature (0 for greedy)
            top_k: Top-k filtering (0 to disable)
            top_p: Top-p filtering (1.0 to disable)
            eos_token_id: End-of-sequence token ID
            verbose: Whether to print generated tokens
            
        Returns:
            generated_ids: Tensor of shape (batch_size, input_len + generated_len)
        """
        self.eval()
        batch_size = input_ids.shape[0]
        device = input_ids.device

        with torch.no_grad():
            max_seqlen = input_ids.shape[1] + max_new_tokens + self.config.num_memory_tokens
            past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache(max_seqlen=max_seqlen, batch_size=batch_size)

            for module in self.model.modules():
                if hasattr(module, 'init_kv_cache'):
                    module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen)
            
            # Prefill phase - process input sequence
            current_input = input_ids
            position_ids = torch.arange(
                self.model.config.num_memory_tokens + current_input.shape[1], dtype=torch.long, device=device
            ).unsqueeze(0).expand(batch_size, -1)
            
            model_kwargs = {
                'input_ids': current_input,
                'past_key_values': past_key_values,
                'fla_past_key_values': fla_past_key_values,
                'mamba_inference_params': mamba_inference_params,
                'use_cache': True,
                'position_ids': position_ids,
            }
            
            outputs = self(**model_kwargs)
            
            # past_key_values, fla_past_key_values, mamba_inference_params = outputs.past_key_values
            mamba_inference_params.seqlen_offset = current_input.shape[1] + self.model.config.num_memory_tokens
            
            logits = outputs.logits[:, -1, :]  # (batch_size, vocab_size)
            
            generated_tokens = []

            # Generation loop
            for step in range(max_new_tokens):
                # Sample next token
                if temperature == 0:
                    next_token = torch.argmax(logits, dim=-1, keepdim=True)
                else:
                    next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p)
                
                generated_tokens.append(next_token)
                
                # Check for EOS
                if eos_token_id is not None and (next_token == eos_token_id).all():
                    if verbose:
                        print("\nEOS reached")
                    break
                
                current_input = next_token  # Shape: (batch_size, 1)
                
                # Update position_ids for decoding
                if position_ids is not None:
                    position_ids = torch.full(
                        (batch_size, 1),
                        position_ids[0, -1] + 1,
                        dtype=torch.long,
                        device=device
                    )
                
                # Forward pass for next token
                model_kwargs = {
                    'input_ids': current_input,
                    'fla_past_key_values': fla_past_key_values,
                    'mamba_inference_params': mamba_inference_params,
                    'past_key_values': past_key_values,
                    'use_cache': True,
                    'position_ids': position_ids,
                }

                outputs = self(**model_kwargs)
                
                mamba_inference_params.seqlen_offset += 1
                
                logits = outputs.logits[:, -1, :]
            
            generated_ids = torch.cat([input_ids] + generated_tokens, dim=1)

            return generated_ids


    def prepare_inputs_for_generation(
            self,
            input_ids,
            past_key_values=None,
            attention_mask=None,
            inputs_embeds=None,
            **kwargs,
    ):         
        if self.config.num_memory_tokens > 0:
            attention_mask = torch.cat([torch.ones(input_ids.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)

        ### Note that KV cache is disable when using model.generate; Please use model.generate_with_cuda_graph or model.generate_with_cache instead.
        past_key_values = None

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            position_ids = position_ids[:, -input_ids.shape[1]:]
                
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None:
            if input_ids.shape[1] == 0:
                model_inputs = {"inputs_embeds": inputs_embeds}
            else:
                inputs_embeds_new = self.model.embed_tokens(input_ids)
                model_inputs = {"inputs_embeds": torch.cat([inputs_embeds, inputs_embeds_new], dim=1)}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs


def sample_token(logits, temperature=1.0, top_k=0, top_p=0.9):
    """
    Sample a token from logits with temperature, top-k, and top-p filtering.
    
    Args:
        logits: Tensor of shape (batch_size, vocab_size)
        temperature: Sampling temperature
        top_k: Top-k filtering (0 to disable)
        top_p: Top-p filtering (1.0 to disable)
        
    Returns:
        next_token: Tensor of shape (batch_size, 1)
    """
    if temperature == 0:
        return torch.argmax(logits, dim=-1, keepdim=True)
    
    logits = logits / temperature
    
    if top_k > 0:
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits.masked_fill_(indices_to_remove, float('-inf'))
    
    if top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
        
        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0
        
        indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
        logits.masked_fill_(indices_to_remove, float('-inf'))
    
    probs = F.softmax(logits, dim=-1)
    return torch.multinomial(probs, num_samples=1)