RL-Guided Data Selection for Language Model Finetuning
Abstract
Reinforcement learning approaches are used to optimize data selection for LLM fine-tuning by formulating it as a Markov Decision Process that achieves comparable or better performance with significantly reduced training time.
Data selection for finetuning Large Language Models (LLMs) can be framed as a budget-constrained optimization problem: maximizing a model's downstream performance under a strict training data budget. Solving this problem is generally intractable, and existing approximate approaches are pretraining-oriented and transfer poorly to the fine-tuning setting. We reformulate this problem as a tractable Markov Decision Process (MDP) and train agents using various Reinforcement Learning (RL) methods to learn optimal data selection policies, guided by an efficient, proxy-model-based reward signal. Across four datasets, training on a 5% subset selected by our approach matches or outperforms fine-tuning on the full dataset by up to 10.8 accuracy points, while cutting wall-clock training time by up to 2 times, highlighting the promise of RL-guided data selection.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper