20 Gated Slot Attention for Efficient Linear-Time Sequence Modeling Linear attention Transformers and their gated variants, celebrated for enabling parallel training and efficient recurrent inference, still fall short in recall-intensive tasks compared to traditional Transformers and demand significant resources for training from scratch. This paper introduces Gated Slot Attention (GSA), which enhances Attention with Bounded-memory-Control (ABC) by incorporating a gating mechanism inspired by Gated Linear Attention (GLA). Essentially, GSA comprises a two-layer GLA linked via softmax, utilizing context-aware memory reading and adaptive forgetting to improve memory capacity while maintaining compact recurrent state size. This design greatly enhances both training and inference efficiency through GLA's hardware-efficient training algorithm and reduced state size. Additionally, retaining the softmax operation is particularly beneficial in "finetuning pretrained Transformers to RNNs" (T2R) settings, reducing the need for extensive training from scratch. Extensive experiments confirm GSA's superior performance in scenarios requiring in-context recall and in T2R settings. 12 authors · Sep 11, 2024 2
111 Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention This work introduces an efficient method to scale Transformer-based Large Language Models (LLMs) to infinitely long inputs with bounded memory and computation. A key component in our proposed approach is a new attention technique dubbed Infini-attention. The Infini-attention incorporates a compressive memory into the vanilla attention mechanism and builds in both masked local attention and long-term linear attention mechanisms in a single Transformer block. We demonstrate the effectiveness of our approach on long-context language modeling benchmarks, 1M sequence length passkey context block retrieval and 500K length book summarization tasks with 1B and 8B LLMs. Our approach introduces minimal bounded memory parameters and enables fast streaming inference for LLMs. 3 authors · Apr 10, 2024 13
- PySAD: A Streaming Anomaly Detection Framework in Python Streaming anomaly detection requires algorithms that operate under strict constraints: bounded memory, single-pass processing, and constant-time complexity. We present PySAD, a comprehensive Python framework addressing these challenges through a unified architecture. The framework implements 17+ streaming algorithms (LODA, Half-Space Trees, xStream) with specialized components including projectors, probability calibrators, and postprocessors. Unlike existing batch-focused frameworks, PySAD enables efficient real-time processing with bounded memory while maintaining compatibility with PyOD and scikit-learn. Supporting all learning paradigms for univariate and multivariate streams, PySAD provides the most comprehensive streaming anomaly detection toolkit in Python. The source code is publicly available at github.com/selimfirat/pysad. 2 authors · Sep 5, 2020
1 Recurrent Context Compression: Efficiently Expanding the Context Window of LLM To extend the context length of Transformer-based large language models (LLMs) and improve comprehension capabilities, we often face limitations due to computational resources and bounded memory storage capacity. This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of LLMs within constrained storage space. We also investigate the issue of poor model responses when both instructions and context are compressed in downstream tasks, and propose an instruction reconstruction method to mitigate this problem. We validated the effectiveness of our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100\% accuracy on a passkey retrieval task with a sequence length of 1M. Finally, our method demonstrated competitive performance in long-text question-answering tasks compared to non-compressed methods, while significantly saving storage resources in long-text inference tasks. Our code, models, and demo are available at https://github.com/WUHU-G/RCC_Transformer 8 authors · Jun 10, 2024 2
2 Evict3R: Training-Free Token Eviction for Memory-Bounded Streaming Visual Geometry Transformers Streaming visual transformers like StreamVGGT achieve strong 3D perception but suffer from unbounded growth of key value (KV) memory, which limits scalability. We propose a training-free, inference-time token eviction policy that bounds memory by discarding redundant tokens while keeping the most informative ones. Our method uses significantly less memory with little to no drop in accuracy: on 7-Scenes with long sequences it reduces peak memory from 18.63 GB to 9.39 GB while accuracy and completeness drop by only 0.003. Under strict memory budgets, eviction enables denser frame sampling, which improves reconstruction accuracy compared to the baseline. Experiments across video depth estimation (Sintel, KITTI), 3D reconstruction (7-Scenes, NRGBD), and camera pose estimation (Sintel, TUM-dynamics) show that our approach closely matches StreamVGGT at a fraction of the memory and makes long-horizon streaming inference more practical. 5 authors · Sep 22
4 EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention Vision transformers have shown great success due to their high model capabilities. However, their remarkable performance is accompanied by heavy computation costs, which makes them unsuitable for real-time applications. In this paper, we propose a family of high-speed vision transformers named EfficientViT. We find that the speed of existing transformer models is commonly bounded by memory inefficient operations, especially the tensor reshaping and element-wise functions in MHSA. Therefore, we design a new building block with a sandwich layout, i.e., using a single memory-bound MHSA between efficient FFN layers, which improves memory efficiency while enhancing channel communication. Moreover, we discover that the attention maps share high similarities across heads, leading to computational redundancy. To address this, we present a cascaded group attention module feeding attention heads with different splits of the full feature, which not only saves computation cost but also improves attention diversity. Comprehensive experiments demonstrate EfficientViT outperforms existing efficient models, striking a good trade-off between speed and accuracy. For instance, our EfficientViT-M5 surpasses MobileNetV3-Large by 1.9% in accuracy, while getting 40.4% and 45.2% higher throughput on Nvidia V100 GPU and Intel Xeon CPU, respectively. Compared to the recent efficient model MobileViT-XXS, EfficientViT-M2 achieves 1.8% superior accuracy, while running 5.8x/3.7x faster on the GPU/CPU, and 7.4x faster when converted to ONNX format. Code and models are available at https://github.com/microsoft/Cream/tree/main/EfficientViT. 6 authors · May 11, 2023 1
3 Online Speculative Decoding Speculative decoding is a pivotal technique to accelerate the inference of large language models (LLMs) by employing a smaller draft model to predict the target model's outputs. However, its efficacy can be limited due to the low predictive accuracy of the draft model, particularly when faced with diverse text inputs and a significant capability gap between the draft and target models. We introduce online speculative decoding (OSD) to address this challenge. The main idea is to continually update (multiple) draft model(s) on observed user query data using the abundant excess computational power in an LLM serving cluster. Given that LLM inference is memory-bounded, the surplus computational power in a typical LLM serving cluster can be repurposed for online retraining of draft models, thereby making the training cost-neutral. Since the query distribution of an LLM service is relatively simple, retraining on query distribution enables the draft model to more accurately predict the target model's outputs, particularly on data originating from query distributions. As the draft model evolves online, it aligns with the query distribution in real time, mitigating distribution shifts. We develop a prototype of online speculative decoding based on online knowledge distillation and evaluate it using both synthetic and real query data on several popular LLMs. The results show a substantial increase in the token acceptance rate by 0.1 to 0.65, which translates into 1.22x to 3.06x latency reduction. 7 authors · Oct 11, 2023