new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

S2SNet: A Pretrained Neural Network for Superconductivity Discovery

Superconductivity allows electrical current to flow without any energy loss, and thus making solids superconducting is a grand goal of physics, material science, and electrical engineering. More than 16 Nobel Laureates have been awarded for their contribution to superconductivity research. Superconductors are valuable for sustainable development goals (SDGs), such as climate change mitigation, affordable and clean energy, industry, innovation and infrastructure, and so on. However, a unified physics theory explaining all superconductivity mechanism is still unknown. It is believed that superconductivity is microscopically due to not only molecular compositions but also the geometric crystal structure. Hence a new dataset, S2S, containing both crystal structures and superconducting critical temperature, is built upon SuperCon and Material Project. Based on this new dataset, we propose a novel model, S2SNet, which utilizes the attention mechanism for superconductivity prediction. To overcome the shortage of data, S2SNet is pre-trained on the whole Material Project dataset with Masked-Language Modeling (MLM). S2SNet makes a new state-of-the-art, with out-of-sample accuracy of 92% and Area Under Curve (AUC) of 0.92. To the best of our knowledge, S2SNet is the first work to predict superconductivity with only information of crystal structures. This work is beneficial to superconductivity discovery and further SDGs. Code and datasets are available in https://github.com/zjuKeLiu/S2SNet

  • 4 authors
·
Jun 28, 2023

Refining Graphical Neural Network Predictions Using Flow Matching for Optimal Power Flow with Constraint-Satisfaction Guarantee

The DC Optimal Power Flow (DC-OPF) problem is fundamental to power system operations, requiring rapid solutions for real-time grid management. While traditional optimization solvers provide optimal solutions, their computational cost becomes prohibitive for large-scale systems requiring frequent recalculations. Machine learning approaches offer promise for acceleration but often struggle with constraint satisfaction and cost optimality. We present a novel two-stage learning framework that combines physics-informed Graph Neural Networks (GNNs) with Continuous Flow Matching (CFM) for solving DC-OPF problems. Our approach embeds fundamental physical principles--including economic dispatch optimality conditions, Kirchhoff's laws, and Karush-Kuhn-Tucker (KKT) complementarity conditions--directly into the training objectives. The first stage trains a GNN to produce feasible initial solutions by learning from physics-informed losses that encode power system constraints. The second stage employs CFM, a simulation-free continuous normalizing flow technique, to refine these solutions toward optimality through learned vector field regression. Evaluated on the IEEE 30-bus system across five load scenarios ranging from 70\% to 130\% nominal load, our method achieves near-optimal solutions with cost gaps below 0.1\% for nominal loads and below 3\% for extreme conditions, while maintaining 100\% feasibility. Our framework bridges the gap between fast but approximate neural network predictions and optimal but slow numerical solvers, offering a practical solution for modern power systems with high renewable penetration requiring frequent dispatch updates.

  • 1 authors
·
Dec 11, 2025

Imaging and controlling electron motion and chemical structural dynamics of biological system in real time and space

Ultrafast electron microscopy (UEM) has found widespread applications in physics, chemistry, and materials science, enabling real-space imaging of dynamics on ultrafast timescales. Recent advances have pushed the temporal resolution of UEM into the attosecond regime, enabling the attomicroscopy technique to directly visualize electron motion. In this work, we extend the capabilities of this powerful imaging tool to investigate ultrafast electron dynamics in a biological system by imaging and controlling light induced electronic and chemical changes in the conductive network of multicellular cable bacteria. Using electron energy loss spectroscopy (EELS), we first observed a laser induced increase in {\pi}-electron density, accompanied by spectral peak broadening and a blueshift features indicative of enhanced conductivity and structural modification. We also traced the effect of ultrafast laser pumping on bulk plasmon electron oscillations by monitoring changes in the plasmon like resonance peak. Additionally, we visualized laser induced chemical structural changes in cable bacteria in real space. The imaging results revealed carbon enrichment alongside a depletion of nitrogen and oxygen, highlighting the controllability of chemical dynamics. Moreover, time resolved EELS measurements further revealed a picosecond scale decay and recovery of both {\pi}-electron and plasmonic features, attributed to electron phonon coupling. In addition to shedding light on the mechanism of electron motion in cable bacteria, these findings demonstrate ultrafast modulation and switching of conductivity, underscoring their potential as bio-optoelectronic components operating on ultrafast timescales.

  • 7 authors
·
Oct 2, 2025