new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 31

How to Make Cross Encoder a Good Teacher for Efficient Image-Text Retrieval?

Dominant dual-encoder models enable efficient image-text retrieval but suffer from limited accuracy while the cross-encoder models offer higher accuracy at the expense of efficiency. Distilling cross-modality matching knowledge from cross-encoder to dual-encoder provides a natural approach to harness their strengths. Thus we investigate the following valuable question: how to make cross-encoder a good teacher for dual-encoder? Our findings are threefold:(1) Cross-modal similarity score distribution of cross-encoder is more concentrated while the result of dual-encoder is nearly normal making vanilla logit distillation less effective. However ranking distillation remains practical as it is not affected by the score distribution.(2) Only the relative order between hard negatives conveys valid knowledge while the order information between easy negatives has little significance.(3) Maintaining the coordination between distillation loss and dual-encoder training loss is beneficial for knowledge transfer. Based on these findings we propose a novel Contrastive Partial Ranking Distillation (CPRD) method which implements the objective of mimicking relative order between hard negative samples with contrastive learning. This approach coordinates with the training of the dual-encoder effectively transferring valid knowledge from the cross-encoder to the dual-encoder. Extensive experiments on image-text retrieval and ranking tasks show that our method surpasses other distillation methods and significantly improves the accuracy of dual-encoder.

  • 10 authors
·
Jul 10, 2024

Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching

Image-text matching remains a challenging task due to heterogeneous semantic diversity across modalities and insufficient distance separability within triplets. Different from previous approaches focusing on enhancing multi-modal representations or exploiting cross-modal correspondence for more accurate retrieval, in this paper we aim to leverage the knowledge transfer between peer branches in a boosting manner to seek a more powerful matching model. Specifically, we propose a brand-new Deep Boosting Learning (DBL) algorithm, where an anchor branch is first trained to provide insights into the data properties, with a target branch gaining more advanced knowledge to develop optimal features and distance metrics. Concretely, an anchor branch initially learns the absolute or relative distance between positive and negative pairs, providing a foundational understanding of the particular network and data distribution. Building upon this knowledge, a target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples. Extensive experiments validate that our DBL can achieve impressive and consistent improvements based on various recent state-of-the-art models in the image-text matching field, and outperform related popular cooperative strategies, e.g., Conventional Distillation, Mutual Learning, and Contrastive Learning. Beyond the above, we confirm that DBL can be seamlessly integrated into their training scenarios and achieve superior performance under the same computational costs, demonstrating the flexibility and broad applicability of our proposed method. Our code is publicly available at: https://github.com/Paranioar/DBL.

  • 5 authors
·
Apr 28, 2024

Learning multi-domain feature relation for visible and Long-wave Infrared image patch matching

Recently, learning-based algorithms have achieved promising performance on cross-spectral image patch matching, which, however, is still far from satisfactory for practical application. On the one hand, a lack of large-scale dataset with diverse scenes haunts its further improvement for learning-based algorithms, whose performances and generalization rely heavily on the dataset size and diversity. On the other hand, more emphasis has been put on feature relation in the spatial domain whereas the scale dependency between features has often been ignored, leading to performance degeneration especially when encountering significant appearance variations for cross-spectral patches. To address these issues, we publish, to be best of our knowledge, the largest visible and Long-wave Infrared (LWIR) image patch matching dataset, termed VL-CMIM, which contains 1300 pairs of strictly aligned visible and LWIR images and over 2 million patch pairs covering diverse scenes such as asteroid, field, country, build, street and water.In addition, a multi-domain feature relation learning network (MD-FRN) is proposed. Input by the features extracted from a four-branch network, both feature relations in spatial and scale domains are learned via a spatial correlation module (SCM) and multi-scale adaptive aggregation module (MSAG), respectively. To further aggregate the multi-domain relations, a deep domain interactive mechanism (DIM) is applied, where the learnt spatial-relation and scale-relation features are exchanged and further input into MSCRM and SCM. This mechanism allows our model to learn interactive cross-domain feature relations, leading to improved robustness to significant appearance changes due to different modality.

  • 5 authors
·
Aug 9, 2023

Unimedvl: Unifying Medical Multimodal Understanding And Generation Through Observation-Knowledge-Analysis

Medical diagnostic applications require models that can process multimodal medical inputs (images, patient histories, lab results) and generate diverse outputs including both textual reports and visual content (annotations, segmentation masks, and images). Despite this need, existing medical AI systems disrupt this unified process: medical image understanding models interpret images but cannot generate visual outputs, while medical image generation models synthesize images but cannot provide textual explanations. This leads to gaps in data representation, feature integration, and task-level multimodal capabilities. To this end, we propose a multi-level framework that draws inspiration from diagnostic workflows through the Observation-Knowledge-Analysis (OKA) paradigm. Specifically, at the observation level, we construct UniMed-5M, a dataset comprising over 5.6M samples that reformat diverse unimodal data into multimodal pairs for foundational observation. At the knowledge level, we propose Progressive Curriculum Learning that systematically introduces medical multimodal knowledge. At the analysis level, we introduce UniMedVL, the first medical unified multimodal model for the simultaneous analysis of image understanding and generation tasks within a single architecture. UniMedVL achieves superior performance on five medical image understanding benchmarks, while matching specialized models in generation quality across eight medical imaging modalities. Crucially, our unified architecture enables bidirectional knowledge sharing: generation tasks enhance visual understanding features, demonstrating that integrating traditionally separate capabilities within a single medical framework unlocks improvements across diverse medical vision-language tasks. Code is available at https://github.com/uni-medical/UniMedVL.

Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal Structured Representations

Large-scale vision-language pre-training has achieved significant performance in multi-modal understanding and generation tasks. However, existing methods often perform poorly on image-text matching tasks that require structured representations, i.e., representations of objects, attributes, and relations. As illustrated in Fig.~reffig:case (a), the models cannot make a distinction between ``An astronaut rides a horse" and ``A horse rides an astronaut". This is because they fail to fully leverage structured knowledge when learning representations in multi-modal scenarios. In this paper, we present an end-to-end framework Structure-CLIP, which integrates Scene Graph Knowledge (SGK) to enhance multi-modal structured representations. Firstly, we use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations. Moreover, a Knowledge-Enhance Encoder (KEE) is proposed to leverage SGK as input to further enhance structured representations. To verify the effectiveness of the proposed framework, we pre-train our model with the aforementioned approaches and conduct experiments on downstream tasks. Experimental results demonstrate that Structure-CLIP achieves state-of-the-art (SOTA) performance on VG-Attribution and VG-Relation datasets, with 12.5% and 4.1% ahead of the multi-modal SOTA model respectively. Meanwhile, the results on MSCOCO indicate that Structure-CLIP significantly enhances the structured representations while maintaining the ability of general representations. Our code is available at https://github.com/zjukg/Structure-CLIP.

  • 11 authors
·
May 5, 2023

SPVLoc: Semantic Panoramic Viewport Matching for 6D Camera Localization in Unseen Environments

In this paper, we present SPVLoc, a global indoor localization method that accurately determines the six-dimensional (6D) camera pose of a query image and requires minimal scene-specific prior knowledge and no scene-specific training. Our approach employs a novel matching procedure to localize the perspective camera's viewport, given as an RGB image, within a set of panoramic semantic layout representations of the indoor environment. The panoramas are rendered from an untextured 3D reference model, which only comprises approximate structural information about room shapes, along with door and window annotations. We demonstrate that a straightforward convolutional network structure can successfully achieve image-to-panorama and ultimately image-to-model matching. Through a viewport classification score, we rank reference panoramas and select the best match for the query image. Then, a 6D relative pose is estimated between the chosen panorama and query image. Our experiments demonstrate that this approach not only efficiently bridges the domain gap but also generalizes well to previously unseen scenes that are not part of the training data. Moreover, it achieves superior localization accuracy compared to the state of the art methods and also estimates more degrees of freedom of the camera pose. Our source code is publicly available at https://fraunhoferhhi.github.io/spvloc .

  • 3 authors
·
Apr 16, 2024 1

Learning semantic sentence representations from visually grounded language without lexical knowledge

Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics.

  • 2 authors
·
Mar 27, 2019

Envision: Benchmarking Unified Understanding & Generation for Causal World Process Insights

Current multimodal models aim to transcend the limitations of single-modality representations by unifying understanding and generation, often using text-to-image (T2I) tasks to calibrate semantic consistency. However, their reliance on static, single-image generation in training and evaluation leads to overfitting to static pattern matching and semantic fusion, while fundamentally hindering their ability to model dynamic processes that unfold over time. To address these constraints, we propose Envision-a causal event progression benchmark for chained text-to-multi-image generation. Grounded in world knowledge and structured by spatiotemporal causality, it reorganizes existing evaluation dimensions and includes 1,000 four-stage prompts spanning six scientific and humanities domains. To transition evaluation from single images to sequential frames and assess whether models truly internalize world knowledge while adhering to causal-temporal constraints, we introduce Envision-Score, a holistic metric integrating multi-dimensional consistency, physicality, and aesthetics. Comprehensive evaluation of 15 models (10 specialized T2I models, 5 unified models) uncovers: specialized T2I models demonstrate proficiency in aesthetic rendering yet lack intrinsic world knowledge. Unified multimodal models bridge this gap, consistently outperforming specialized counterparts in causal narrative coherence. However, even these unified architectures remain subordinate to closed-source models and struggle to overcome the core challenge of spatiotemporal consistency. This demonstrates that a focus on causally-isolated single images impedes multi-frame reasoning and generation, promoting static pattern matching over dynamic world modeling-ultimately limiting world knowledge internalization, generation.

opendatalab OpenDataLab
·
Dec 1 5

Two-in-One Depth: Bridging the Gap Between Monocular and Binocular Self-supervised Depth Estimation

Monocular and binocular self-supervised depth estimations are two important and related tasks in computer vision, which aim to predict scene depths from single images and stereo image pairs respectively. In literature, the two tasks are usually tackled separately by two different kinds of models, and binocular models generally fail to predict depth from single images, while the prediction accuracy of monocular models is generally inferior to binocular models. In this paper, we propose a Two-in-One self-supervised depth estimation network, called TiO-Depth, which could not only compatibly handle the two tasks, but also improve the prediction accuracy. TiO-Depth employs a Siamese architecture and each sub-network of it could be used as a monocular depth estimation model. For binocular depth estimation, a Monocular Feature Matching module is proposed for incorporating the stereo knowledge between the two images, and the full TiO-Depth is used to predict depths. We also design a multi-stage joint-training strategy for improving the performances of TiO-Depth in both two tasks by combining the relative advantages of them. Experimental results on the KITTI, Cityscapes, and DDAD datasets demonstrate that TiO-Depth outperforms both the monocular and binocular state-of-the-art methods in most cases, and further verify the feasibility of a two-in-one network for monocular and binocular depth estimation. The code is available at https://github.com/ZM-Zhou/TiO-Depth_pytorch.

  • 2 authors
·
Sep 2, 2023

Reverse Region-to-Entity Annotation for Pixel-Level Visual Entity Linking

Visual Entity Linking (VEL) is a crucial task for achieving fine-grained visual understanding, matching objects within images (visual mentions) to entities in a knowledge base. Previous VEL tasks rely on textual inputs, but writing queries for complex scenes can be challenging. Visual inputs like clicks or bounding boxes offer a more convenient alternative. Therefore, we propose a new task, Pixel-Level Visual Entity Linking (PL-VEL), which uses pixel masks from visual inputs to refer to objects, supplementing reference methods for VEL. To facilitate research on this task, we have constructed the MaskOVEN-Wiki dataset through an entirely automatic reverse region-entity annotation framework. This dataset contains over 5 million annotations aligning pixel-level regions with entity-level labels, which will advance visual understanding towards fine-grained. Moreover, as pixel masks correspond to semantic regions in an image, we enhance previous patch-interacted attention with region-interacted attention by a visual semantic tokenization approach. Manual evaluation results indicate that the reverse annotation framework achieved a 94.8% annotation success rate. Experimental results show that models trained on this dataset improved accuracy by 18 points compared to zero-shot models. Additionally, the semantic tokenization method achieved a 5-point accuracy improvement over the trained baseline.

  • 9 authors
·
Dec 18, 2024