new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 9

Thinking with Geometry: Active Geometry Integration for Spatial Reasoning

Recent progress in spatial reasoning with Multimodal Large Language Models (MLLMs) increasingly leverages geometric priors from 3D encoders. However, most existing integration strategies remain passive: geometry is exposed as a global stream and fused in an indiscriminate manner, which often induces semantic-geometry misalignment and redundant signals. We propose GeoThinker, a framework that shifts the paradigm from passive fusion to active perception. Instead of feature mixing, GeoThinker enables the model to selectively retrieve geometric evidence conditioned on its internal reasoning demands. GeoThinker achieves this through Spatial-Grounded Fusion applied at carefully selected VLM layers, where semantic visual priors selectively query and integrate task-relevant geometry via frame-strict cross-attention, further calibrated by Importance Gating that biases per-frame attention toward task-relevant structures. Comprehensive evaluation results show that GeoThinker sets a new state-of-the-art in spatial intelligence, achieving a peak score of 72.6 on the VSI-Bench. Furthermore, GeoThinker demonstrates robust generalization and significantly improved spatial perception across complex downstream scenarios, including embodied referring and autonomous driving. Our results indicate that the ability to actively integrate spatial structures is essential for next-generation spatial intelligence. Code can be found at https://github.com/Li-Hao-yuan/GeoThinker.

  • 8 authors
·
Feb 5

Deconstructing Recurrence, Attention, and Gating: Investigating the transferability of Transformers and Gated Recurrent Neural Networks in forecasting of dynamical systems

Machine learning architectures, including transformers and recurrent neural networks (RNNs) have revolutionized forecasting in applications ranging from text processing to extreme weather. Notably, advanced network architectures, tuned for applications such as natural language processing, are transferable to other tasks such as spatiotemporal forecasting tasks. However, there is a scarcity of ablation studies to illustrate the key components that enable this forecasting accuracy. The absence of such studies, although explainable due to the associated computational cost, intensifies the belief that these models ought to be considered as black boxes. In this work, we decompose the key architectural components of the most powerful neural architectures, namely gating and recurrence in RNNs, and attention mechanisms in transformers. Then, we synthesize and build novel hybrid architectures from the standard blocks, performing ablation studies to identify which mechanisms are effective for each task. The importance of considering these components as hyper-parameters that can augment the standard architectures is exhibited on various forecasting datasets, from the spatiotemporal chaotic dynamics of the multiscale Lorenz 96 system, the Kuramoto-Sivashinsky equation, as well as standard real world time-series benchmarks. A key finding is that neural gating and attention improves the performance of all standard RNNs in most tasks, while the addition of a notion of recurrence in transformers is detrimental. Furthermore, our study reveals that a novel, sparsely used, architecture which integrates Recurrent Highway Networks with neural gating and attention mechanisms, emerges as the best performing architecture in high-dimensional spatiotemporal forecasting of dynamical systems.

  • 3 authors
·
Oct 3, 2024

Domain-Specific Pruning of Large Mixture-of-Experts Models with Few-shot Demonstrations

Mixture-of-Experts (MoE) models achieve a favorable trade-off between performance and inference efficiency by activating only a subset of experts. However, the memory overhead of storing all experts remains a major limitation, especially in large-scale MoE models such as DeepSeek-R1(671B). In this study, we investigate domain specialization and expert redundancy in large-scale MoE models and uncover a consistent behavior we term few-shot expert localization, with only a few in-domain demonstrations, the model consistently activates a sparse and stable subset of experts on tasks within the same domain. Building on this observation, we propose a simple yet effective pruning framework, EASY-EP, that leverages a few domain-specific demonstrations to identify and retain only the most relevant experts. EASY-EP comprises two key components: output-aware expert importance assessment and expert-level token contribution estimation. The former evaluates the importance of each expert for the current token by considering the gating scores and L2 norm of the outputs of activated experts, while the latter assesses the contribution of tokens based on representation similarities before and after routed experts. Experiments on DeepSeek-R1 and DeepSeek-V3-0324 show that our method can achieve comparable performances and 2.99times throughput under the same memory budget with full model with only half the experts.

  • 7 authors
·
Apr 9, 2025

MoDES: Accelerating Mixture-of-Experts Multimodal Large Language Models via Dynamic Expert Skipping

Mixture-of-Experts (MoE) Multimodal large language models (MLLMs) excel at vision-language tasks, but they suffer from high computational inefficiency. To reduce inference overhead, expert skipping methods have been proposed to deactivate redundant experts based on the current input tokens. However, we find that applying these methods-originally designed for unimodal large language models (LLMs)-to MLLMs results in considerable performance degradation. This is primarily because such methods fail to account for the heterogeneous contributions of experts across MoE layers and modality-specific behaviors of tokens within these layers. Motivated by these findings, we propose MoDES, the first training-free framework that adaptively skips experts to enable efficient and accurate MoE MLLM inference. It incorporates a globally-modulated local gating (GMLG) mechanism that integrates global layer-wise importance into local routing probabilities to accurately estimate per-token expert importance. A dual-modality thresholding (DMT) method is then applied, which processes tokens from each modality separately, to derive the skipping schedule. To set the optimal thresholds, we introduce a frontier search algorithm that exploits monotonicity properties, cutting convergence time from several days to a few hours. Extensive experiments for 3 model series across 13 benchmarks demonstrate that MoDES far outperforms previous approaches. For instance, when skipping 88% experts for Qwen3-VL-MoE-30B-A3B-Instruct, the performance boost is up to 10.67% (97.33% vs. 86.66%). Furthermore, MoDES significantly enhances inference speed, improving the prefilling time by 2.16times and the decoding time by 1.26times.

  • 8 authors
·
Nov 19, 2025

Build a Robust QA System with Transformer-based Mixture of Experts

In this paper, we aim to build a robust question answering system that can adapt to out-of-domain datasets. A single network may overfit to the superficial correlation in the training distribution, but with a meaningful number of expert sub-networks, a gating network that selects a sparse combination of experts for each input, and careful balance on the importance of expert sub-networks, the Mixture-of-Experts (MoE) model allows us to train a multi-task learner that can be generalized to out-of-domain datasets. We also explore the possibility of bringing the MoE layers up to the middle of the DistilBERT and replacing the dense feed-forward network with a sparsely-activated switch FFN layers, similar to the Switch Transformer architecture, which simplifies the MoE routing algorithm with reduced communication and computational costs. In addition to model architectures, we explore techniques of data augmentation including Easy Data Augmentation (EDA) and back translation, to create more meaningful variance among the small out-of-domain training data, therefore boosting the performance and robustness of our models. In this paper, we show that our combination of best architecture and data augmentation techniques achieves a 53.477 F1 score in the out-of-domain evaluation, which is a 9.52% performance gain over the baseline. On the final test set, we reported a higher 59.506 F1 and 41.651 EM. We successfully demonstrate the effectiveness of Mixture-of-Expert architecture in a Robust QA task.

  • 3 authors
·
Mar 19, 2022

FoldGPT: Simple and Effective Large Language Model Compression Scheme

The demand for deploying large language models(LLMs) on mobile devices continues to increase, driven by escalating data security concerns and cloud costs. However, network bandwidth and memory limitations pose challenges for deploying billion-level models on mobile devices. In this study, we investigate the outputs of different layers across various scales of LLMs and found that the outputs of most layers exhibit significant similarity. Moreover, this similarity becomes more pronounced as the model size increases, indicating substantial redundancy in the depth direction of the LLMs. Based on this observation, we propose an efficient model volume compression strategy, termed FoldGPT, which combines block removal and block parameter sharing.This strategy consists of three parts: (1) Based on the learnable gating parameters, we determine the block importance ranking while modeling the coupling effect between blocks. Then we delete some redundant layers based on the given removal rate. (2) For the retained blocks, we apply a specially designed group parameter sharing strategy, where blocks within the same group share identical weights, significantly compressing the number of parameters and slightly reducing latency overhead. (3) After sharing these Blocks, we "cure" the mismatch caused by sparsity with a minor amount of fine-tuning and introduce a tail-layer distillation strategy to improve the performance. Experiments demonstrate that FoldGPT outperforms previous state-of-the-art(SOTA) methods in efficient model compression, demonstrating the feasibility of achieving model lightweighting through straightforward block removal and parameter sharing.

  • 7 authors
·
Jun 30, 2024 2

Gated Attention for Large Language Models: Non-linearity, Sparsity, and Attention-Sink-Free

Gating mechanisms have been widely utilized, from early models like LSTMs and Highway Networks to recent state space models, linear attention, and also softmax attention. Yet, existing literature rarely examines the specific effects of gating. In this work, we conduct comprehensive experiments to systematically investigate gating-augmented softmax attention variants. Specifically, we perform a comprehensive comparison over 30 variants of 15B Mixture-of-Experts (MoE) models and 1.7B dense models trained on a 3.5 trillion token dataset. Our central finding is that a simple modification-applying a head-specific sigmoid gate after the Scaled Dot-Product Attention (SDPA)-consistently improves performance. This modification also enhances training stability, tolerates larger learning rates, and improves scaling properties. By comparing various gating positions and computational variants, we attribute this effectiveness to two key factors: (1) introducing non-linearity upon the low-rank mapping in the softmax attention, and (2) applying query-dependent sparse gating scores to modulate the SDPA output. Notably, we find this sparse gating mechanism mitigates 'attention sink' and enhances long-context extrapolation performance, and we also release related https://github.com/qiuzh20/gated_attention{codes} and https://huggingface.co/QwQZh/gated_attention{models} to facilitate future research.

  • 13 authors
·
May 10, 2025 1

Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN

Large pretrained models, coupled with fine-tuning, are slowly becoming established as the dominant architecture in machine learning. Even though these models offer impressive performance, their practical application is often limited by the prohibitive amount of resources required for every inference. Early-exiting dynamic neural networks (EDNN) circumvent this issue by allowing a model to make some of its predictions from intermediate layers (i.e., early-exit). Training an EDNN architecture is challenging as it consists of two intertwined components: the gating mechanism (GM) that controls early-exiting decisions and the intermediate inference modules (IMs) that perform inference from intermediate representations. As a result, most existing approaches rely on thresholding confidence metrics for the gating mechanism and strive to improve the underlying backbone network and the inference modules. Although successful, this approach has two fundamental shortcomings: 1) the GMs and the IMs are decoupled during training, leading to a train-test mismatch; and 2) the thresholding gating mechanism introduces a positive bias into the predictive probabilities, making it difficult to readily extract uncertainty information. We propose a novel architecture that connects these two modules. This leads to significant performance improvements on classification datasets and enables better uncertainty characterization capabilities.

  • 3 authors
·
Oct 13, 2023

Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

Stochastic neurons and hard non-linearities can be useful for a number of reasons in deep learning models, but in many cases they pose a challenging problem: how to estimate the gradient of a loss function with respect to the input of such stochastic or non-smooth neurons? I.e., can we "back-propagate" through these stochastic neurons? We examine this question, existing approaches, and compare four families of solutions, applicable in different settings. One of them is the minimum variance unbiased gradient estimator for stochatic binary neurons (a special case of the REINFORCE algorithm). A second approach, introduced here, decomposes the operation of a binary stochastic neuron into a stochastic binary part and a smooth differentiable part, which approximates the expected effect of the pure stochatic binary neuron to first order. A third approach involves the injection of additive or multiplicative noise in a computational graph that is otherwise differentiable. A fourth approach heuristically copies the gradient with respect to the stochastic output directly as an estimator of the gradient with respect to the sigmoid argument (we call this the straight-through estimator). To explore a context where these estimators are useful, we consider a small-scale version of {\em conditional computation}, where sparse stochastic units form a distributed representation of gaters that can turn off in combinatorially many ways large chunks of the computation performed in the rest of the neural network. In this case, it is important that the gating units produce an actual 0 most of the time. The resulting sparsity can be potentially be exploited to greatly reduce the computational cost of large deep networks for which conditional computation would be useful.

  • 3 authors
·
Aug 15, 2013

Statistical Perspective of Top-K Sparse Softmax Gating Mixture of Experts

Top-K sparse softmax gating mixture of experts has been widely used for scaling up massive deep-learning architectures without increasing the computational cost. Despite its popularity in real-world applications, the theoretical understanding of that gating function has remained an open problem. The main challenge comes from the structure of the top-K sparse softmax gating function, which partitions the input space into multiple regions with distinct behaviors. By focusing on a Gaussian mixture of experts, we establish theoretical results on the effects of the top-K sparse softmax gating function on both density and parameter estimations. Our results hinge upon defining novel loss functions among parameters to capture different behaviors of the input regions. When the true number of experts k_{ast} is known, we demonstrate that the convergence rates of density and parameter estimations are both parametric on the sample size. However, when k_{ast} becomes unknown and the true model is over-specified by a Gaussian mixture of k experts where k > k_{ast}, our findings suggest that the number of experts selected from the top-K sparse softmax gating function must exceed the total cardinality of a certain number of Voronoi cells associated with the true parameters to guarantee the convergence of the density estimation. Moreover, while the density estimation rate remains parametric under this setting, the parameter estimation rates become substantially slow due to an intrinsic interaction between the softmax gating and expert functions.

  • 4 authors
·
Sep 24, 2023

Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts?

Dense-to-sparse gating mixture of experts (MoE) has recently become an effective alternative to a well-known sparse MoE. Rather than fixing the number of activated experts as in the latter model, which could limit the investigation of potential experts, the former model utilizes the temperature to control the softmax weight distribution and the sparsity of the MoE during training in order to stabilize the expert specialization. Nevertheless, while there are previous attempts to theoretically comprehend the sparse MoE, a comprehensive analysis of the dense-to-sparse gating MoE has remained elusive. Therefore, we aim to explore the impacts of the dense-to-sparse gate on the maximum likelihood estimation under the Gaussian MoE in this paper. We demonstrate that due to interactions between the temperature and other model parameters via some partial differential equations, the convergence rates of parameter estimations are slower than any polynomial rates, and could be as slow as O(1/log(n)), where n denotes the sample size. To address this issue, we propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function. By imposing linearly independence conditions on the activation function and its derivatives, we show that the parameter estimation rates are significantly improved to polynomial rates.

  • 3 authors
·
Jan 24, 2024

Adaptive Computation Modules: Granular Conditional Computation For Efficient Inference

The computational cost of transformer models makes them inefficient in low-latency or low-power applications. While techniques such as quantization or linear attention can reduce the computational load, they may incur a reduction in accuracy. In addition, globally reducing the cost for all inputs may be sub-optimal. We observe that for each layer, the full width of the layer may be needed only for a small subset of tokens inside a batch and that the "effective" width needed to process a token can vary from layer to layer. Motivated by this observation, we introduce the Adaptive Computation Module (ACM), a generic module that dynamically adapts its computational load to match the estimated difficulty of the input on a per-token basis. An ACM consists of a sequence of learners that progressively refine the output of their preceding counterparts. An additional gating mechanism determines the optimal number of learners to execute for each token. We also describe a distillation technique to replace any pre-trained model with an "ACMized" variant. The distillation phase is designed to be highly parallelizable across layers while being simple to plug-and-play into existing networks. Our evaluation of transformer models in computer vision and speech recognition demonstrates that substituting layers with ACMs significantly reduces inference costs without degrading the downstream accuracy for a wide interval of user-defined budgets.

  • 5 authors
·
Dec 15, 2023

Gated Linear Attention Transformers with Hardware-Efficient Training

Transformers with linear attention allow for efficient parallel training but can simultaneously be formulated as an RNN with 2D (matrix-valued) hidden states, thus enjoying linear (with respect to output length) inference complexity. Recent works such as RetNet (Sun et al., 2023) and TransNormerLLM (Qin et al., 2023a) observe that adding a global decay term to the additive RNN update rule greatly improves performance, sometimes outperforming standard Transformers with softmax attention when trained at scale. In this work we show that adding a data-dependent gating mechanism further improves performance. We derive a parallel form of this gated linear attention layer that enables efficient training. However, a straightforward, numerically stable implementation of this parallel form requires generalized matrix multiplications in log-space for numerical stability, and thus cannot take advantage of tensor cores on modern GPUs which are optimized for standard matrix multiplications. We develop a hardware-efficient version of the parallel form that can still make use of tensor cores through block-parallel computations over sequence chunks. Experiments on moderate-scale language modeling (340M-parameter models trained on 15B tokens, 1.3B-parameter models trained on 100B tokens) show that gated linear attention (GLA) Transformers perform competitively against a strong LLaMA-architecture Transformer baseline (Touvron et al., 2023) as well as Mamba (Gu & Dao, 2023), a recently introduced state-space model with a data-dependent state transition mechanism. For training speed, our Triton-based implementation performs comparably to CUDA-optimized FlashAttention-2 (Dao, 2023) under the regular 2048 training length setting, while outperforming FlashAttention-2 when training on longer sequences beyond 4096.

  • 5 authors
·
Dec 11, 2023 2

Gaussian Adaptive Attention is All You Need: Robust Contextual Representations Across Multiple Modalities

We propose the Multi-Head Gaussian Adaptive Attention Mechanism (GAAM), a novel probabilistic attention framework, and the Gaussian Adaptive Transformer (GAT), designed to enhance information aggregation across multiple modalities, including Speech, Text and Vision. GAAM integrates learnable mean and variance into its attention mechanism, implemented in a Multi-Headed framework enabling it to collectively model any Probability Distribution for dynamic recalibration of feature significance. This method demonstrates significant improvements, especially with highly non-stationary data, surpassing the state-of-the-art attention techniques in model performance (up to approximately +20% in accuracy) by identifying key elements within the feature space. GAAM's compatibility with dot-product-based attention models and relatively low number of parameters showcases its adaptability and potential to boost existing attention frameworks. Empirically, GAAM exhibits superior adaptability and efficacy across a diverse range of tasks, including emotion recognition in speech, image classification, and text classification, thereby establishing its robustness and versatility in handling multi-modal data. Furthermore, we introduce the Importance Factor (IF), a new learning-based metric that enhances the explainability of models trained with GAAM-based methods. Overall, GAAM represents an advancement towards development of better performing and more explainable attention models across multiple modalities.

  • 3 authors
·
Jan 20, 2024

Layer-wise Importance Matters: Less Memory for Better Performance in Parameter-efficient Fine-tuning of Large Language Models

Parameter-Efficient Fine-Tuning (PEFT) methods have gained significant popularity for adapting pre-trained Large Language Models (LLMs) to downstream tasks, primarily due to their potential to significantly reduce memory and computational overheads. However, a common limitation in most PEFT approaches is their application of a uniform architectural design across all layers. This uniformity involves identical trainable modules and ignores the varying importance of each layer, leading to sub-optimal fine-tuning results. To overcome the above limitation and obtain better performance, we develop a novel approach, Importance-aware Sparse Tuning (IST), to fully utilize the inherent sparsity and select the most important subset of full layers with effective layer-wise importance scoring. The proposed IST is a versatile and plug-and-play technique compatible with various PEFT methods that operate on a per-layer basis. By leveraging the estimated importance scores, IST dynamically updates these selected layers in PEFT modules, leading to reduced memory demands. We further provide theoretical proof of convergence and empirical evidence of superior performance to demonstrate the advantages of IST over uniform updating strategies. Extensive experiments on a range of LLMs, PEFTs, and downstream tasks substantiate the effectiveness of our proposed method, showcasing IST's capacity to enhance existing layer-based PEFT methods. Our code is available at https://github.com/Kaiseem/IST.

  • 7 authors
·
Oct 15, 2024

Learning to Segment from Scribbles using Multi-scale Adversarial Attention Gates

Large, fine-grained image segmentation datasets, annotated at pixel-level, are difficult to obtain, particularly in medical imaging, where annotations also require expert knowledge. Weakly-supervised learning can train models by relying on weaker forms of annotation, such as scribbles. Here, we learn to segment using scribble annotations in an adversarial game. With unpaired segmentation masks, we train a multi-scale GAN to generate realistic segmentation masks at multiple resolutions, while we use scribbles to learn their correct position in the image. Central to the model's success is a novel attention gating mechanism, which we condition with adversarial signals to act as a shape prior, resulting in better object localization at multiple scales. Subject to adversarial conditioning, the segmentor learns attention maps that are semantic, suppress the noisy activations outside the objects, and reduce the vanishing gradient problem in the deeper layers of the segmentor. We evaluated our model on several medical (ACDC, LVSC, CHAOS) and non-medical (PPSS) datasets, and we report performance levels matching those achieved by models trained with fully annotated segmentation masks. We also demonstrate extensions in a variety of settings: semi-supervised learning; combining multiple scribble sources (a crowdsourcing scenario) and multi-task learning (combining scribble and mask supervision). We release expert-made scribble annotations for the ACDC dataset, and the code used for the experiments, at https://vios-s.github.io/multiscale-adversarial-attention-gates

  • 3 authors
·
Jul 2, 2020

ViG: Linear-complexity Visual Sequence Learning with Gated Linear Attention

Recently, linear complexity sequence modeling networks have achieved modeling capabilities similar to Vision Transformers on a variety of computer vision tasks, while using fewer FLOPs and less memory. However, their advantage in terms of actual runtime speed is not significant. To address this issue, we introduce Gated Linear Attention (GLA) for vision, leveraging its superior hardware-awareness and efficiency. We propose direction-wise gating to capture 1D global context through bidirectional modeling and a 2D gating locality injection to adaptively inject 2D local details into 1D global context. Our hardware-aware implementation further merges forward and backward scanning into a single kernel, enhancing parallelism and reducing memory cost and latency. The proposed model, ViG, offers a favorable trade-off in accuracy, parameters, and FLOPs on ImageNet and downstream tasks, outperforming popular Transformer and CNN-based models. Notably, ViG-S matches DeiT-B's accuracy while using only 27% of the parameters and 20% of the FLOPs, running 2times faster on 224times224 images. At 1024times1024 resolution, ViG-T uses 5.2times fewer FLOPs, saves 90% GPU memory, runs 4.8times faster, and achieves 20.7% higher top-1 accuracy than DeiT-T. These results position ViG as an efficient and scalable solution for visual representation learning. Code is available at https://github.com/hustvl/ViG.

  • 5 authors
·
May 28, 2024

MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models

Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce MoVE (Mixture of Value Embeddings), a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.

  • 1 authors
·
Jan 30

The Consciousness Prior

A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.

  • 1 authors
·
Sep 25, 2017

Mixture of Experts Meets Prompt-Based Continual Learning

Exploiting the power of pre-trained models, prompt-based approaches stand out compared to other continual learning solutions in effectively preventing catastrophic forgetting, even with very few learnable parameters and without the need for a memory buffer. While existing prompt-based continual learning methods excel in leveraging prompts for state-of-the-art performance, they often lack a theoretical explanation for the effectiveness of prompting. This paper conducts a theoretical analysis to unravel how prompts bestow such advantages in continual learning, thus offering a new perspective on prompt design. We first show that the attention block of pre-trained models like Vision Transformers inherently encodes a special mixture of experts architecture, characterized by linear experts and quadratic gating score functions. This realization drives us to provide a novel view on prefix tuning, reframing it as the addition of new task-specific experts, thereby inspiring the design of a novel gating mechanism termed Non-linear Residual Gates (NoRGa). Through the incorporation of non-linear activation and residual connection, NoRGa enhances continual learning performance while preserving parameter efficiency. The effectiveness of NoRGa is substantiated both theoretically and empirically across diverse benchmarks and pretraining paradigms. Our code is publicly available at https://github.com/Minhchuyentoancbn/MoE_PromptCL

  • 7 authors
·
May 22, 2024

Gradient-Based Post-Training Quantization: Challenging the Status Quo

Quantization has become a crucial step for the efficient deployment of deep neural networks, where floating point operations are converted to simpler fixed point operations. In its most naive form, it simply consists in a combination of scaling and rounding transformations, leading to either a limited compression rate or a significant accuracy drop. Recently, Gradient-based post-training quantization (GPTQ) methods appears to be constitute a suitable trade-off between such simple methods and more powerful, yet expensive Quantization-Aware Training (QAT) approaches, particularly when attempting to quantize LLMs, where scalability of the quantization process is of paramount importance. GPTQ essentially consists in learning the rounding operation using a small calibration set. In this work, we challenge common choices in GPTQ methods. In particular, we show that the process is, to a certain extent, robust to a number of variables (weight selection, feature augmentation, choice of calibration set). More importantly, we derive a number of best practices for designing more efficient and scalable GPTQ methods, regarding the problem formulation (loss, degrees of freedom, use of non-uniform quantization schemes) or optimization process (choice of variable and optimizer). Lastly, we propose a novel importance-based mixed-precision technique. Those guidelines lead to significant performance improvements on all the tested state-of-the-art GPTQ methods and networks (e.g. +6.819 points on ViT for 4-bit quantization), paving the way for the design of scalable, yet effective quantization methods.

  • 3 authors
·
Aug 15, 2023

Scissorhands: Exploiting the Persistence of Importance Hypothesis for LLM KV Cache Compression at Test Time

Large language models(LLMs) have sparked a new wave of exciting AI applications. Hosting these models at scale requires significant memory resources. One crucial memory bottleneck for the deployment stems from the context window. It is commonly recognized that model weights are memory hungry; however, the size of key-value embedding stored during the generation process (KV cache) can easily surpass the model size. The enormous size of the KV cache puts constraints on the inference batch size, which is crucial for high throughput inference workload. Inspired by an interesting observation of the attention scores, we hypothesize the persistence of importance: only pivotal tokens, which had a substantial influence at one step, will significantly influence future generations. Based on our empirical verification and theoretical analysis around this hypothesis, we propose Scissorhands, a system that maintains the memory usage of the KV cache at a fixed budget without finetuning the model. In essence, Scissorhands manages the KV cache by storing the pivotal tokens with a higher probability. We validate that Scissorhands reduces the inference memory usage of the KV cache by up to 5X without compromising model quality. We further demonstrate that Scissorhands can be combined with 4-bit quantization, traditionally used to compress model weights, to achieve up to 20X compression.

  • 8 authors
·
May 26, 2023

PILL: Plug Into LLM with Adapter Expert and Attention Gate

Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.

  • 4 authors
·
Nov 3, 2023

SeerAttention: Learning Intrinsic Sparse Attention in Your LLMs

Attention is the cornerstone of modern Large Language Models (LLMs). Yet its quadratic complexity limits the efficiency and scalability of LLMs, especially for those with a long-context window. A promising approach addressing this limitation is to leverage the sparsity in attention. However, existing sparsity-based solutions predominantly rely on predefined patterns or heuristics to approximate sparsity. This practice falls short to fully capture the dynamic nature of attention sparsity in language-based tasks. This paper argues that attention sparsity should be learned rather than predefined. To this end, we design SeerAttention, a new Attention mechanism that augments the conventional attention with a learnable gate that adaptively selects significant blocks in an attention map and deems the rest blocks sparse. Such block-level sparsity effectively balances accuracy and speedup. To enable efficient learning of the gating network, we develop a customized FlashAttention implementation that extracts the block-level ground truth of attention map with minimum overhead. SeerAttention not only applies to post-training, but also excels in long-context fine-tuning. Our results show that at post-training stages, SeerAttention significantly outperforms state-of-the-art static or heuristic-based sparse attention methods, while also being more versatile and flexible to adapt to varying context lengths and sparsity ratios. When applied to long-context fine-tuning with YaRN, SeerAttention can achieve a remarkable 90% sparsity ratio at a 32k context length with minimal perplexity loss, offering a 5.67x speedup over FlashAttention-2.

  • 8 authors
·
Oct 17, 2024 2

Refusal Falls off a Cliff: How Safety Alignment Fails in Reasoning?

Large reasoning models (LRMs) with multi-step reasoning capabilities have shown remarkable problem-solving abilities, yet they exhibit concerning safety vulnerabilities that remain poorly understood. In this work, we investigate why safety alignment fails in reasoning models through a mechanistic interpretability lens. Using a linear probing approach to trace refusal intentions across token positions, we discover a striking phenomenon termed as refusal cliff: many poorly-aligned reasoning models correctly identify harmful prompts and maintain strong refusal intentions during their thinking process, but experience a sharp drop in refusal scores at the final tokens before output generation. This suggests that these models are not inherently unsafe; rather, their refusal intentions are systematically suppressed. Through causal intervention analysis, we identify a sparse set of attention heads that negatively contribute to refusal behavior. Ablating just 3\% of these heads can reduce attack success rates below 10\%. Building on these mechanistic insights, we propose Cliff-as-a-Judge, a novel data selection method that identifies training examples exhibiting the largest refusal cliff to efficiently repair reasoning models' safety alignment. This approach achieves comparable safety improvements using only 1.7\% of the vanilla safety training data, demonstrating a less-is-more effect in safety alignment.

rednote-hilab rednote-hilab
·
Oct 7, 2025 2

Gated Associative Memory: A Parallel O(N) Architecture for Efficient Sequence Modeling

The Transformer architecture, underpinned by the self-attention mechanism, has become the de facto standard for sequence modeling tasks. However, its core computational primitive scales quadratically with sequence length (O(N^2)), creating a significant bottleneck for processing long contexts. In this paper, we propose the Gated Associative Memory (GAM) network, a novel, fully parallel architecture for sequence modeling that exhibits linear complexity (O(N)) with respect to sequence length. The GAM block replaces the self-attention layer with two parallel pathways: a causal convolution to efficiently capture local, position-dependent context, and a parallel associative memory retrieval mechanism to model global, content-based patterns. These pathways are dynamically fused using a gating mechanism, allowing the model to flexibly combine local and global information for each token. We implement GAM from scratch and conduct a rigorous comparative analysis against a standard Transformer model and a modern linear-time baseline (Mamba) on the WikiText-2 benchmark, as well as against the Transformer on the TinyStories dataset. Our experiments demonstrate that GAM is consistently faster, outperforming both baselines on training speed, and achieves a superior or competitive final validation perplexity across all datasets, establishing it as a promising and efficient alternative for sequence modeling.

  • 1 authors
·
Aug 30, 2025 5

Cache What Lasts: Token Retention for Memory-Bounded KV Cache in LLMs

Memory and computation remain core bottlenecks in long-horizon LLM inference due to the quadratic cost of self-attention and the ever-growing key-value (KV) cache. Existing strategies for memory-bounded inference, such as quantization, offloading, or heuristic KV eviction, either incur high orchestration costs or rely on unreliable attention-based proxies of importance. We propose TRIM-KV, a novel approach that learns each token's intrinsic importance at creation time via a lightweight retention gate. Each gate predicts a scalar retention score that decays over time, reflecting the long-term utility of the token for a specific layer and head. Tokens with low scores are evicted when the memory budget is exceeded, ensuring that the cache always contains the most critical tokens. TRIM-KV is trained efficiently through distillation from a frozen LLM combined with a capacity loss, requiring only gate fine-tuning and adding negligible inference overhead. Across mathematical reasoning (GSM8K, MATH-500, AIME24), procedural generation (LongProc), conversational long-memory benchmarks (LongMemEval), and long-context understanding (LongBench and SCBench), TRIM-KV consistently outperforms strong eviction and learnable retrieval baselines, especially in low-memory regimes. Remarkably, it even surpasses full-cache models in some settings, showing that selective retention can serve as a form of regularization, suppressing noise from uninformative tokens. Qualitative analyses further reveal that learned retention scores align with human intuition, naturally recovering heuristics such as sink tokens, sliding windows, and gist compression without explicit design. Beyond efficiency, retention scores provide insights into layer- and head-specific roles, suggesting a new path toward LLM interpretability.

  • 5 authors
·
Dec 2, 2025 1

PRISM: Festina Lente Proactivity -- Risk-Sensitive, Uncertainty-Aware Deliberation for Proactive Agents

Proactive agents must decide not only what to say but also whether and when to intervene. Many current systems rely on brittle heuristics or indiscriminate long reasoning, which offers little control over the benefit-burden tradeoff. We formulate the problem as cost-sensitive selective intervention and present PRISM, a novel framework that couples a decision-theoretic gate with a dual-process reasoning architecture. At inference time, the agent intervenes only when a calibrated probability of user acceptance exceeds a threshold derived from asymmetric costs of missed help and false alarms. Inspired by festina lente (Latin: "make haste slowly"), we gate by an acceptance-calibrated, cost-derived threshold and invoke a resource-intensive Slow mode with counterfactual checks only near the decision boundary, concentrating computation on ambiguous and high-stakes cases. Training uses gate-aligned, schema-locked distillation: a teacher running the full PRISM pipeline provides dense, executable supervision on unlabeled interaction traces, while the student learns a response policy that is explicitly decoupled from the intervention gate to enable tunable and auditable control. On ProactiveBench, PRISM reduces false alarms by 22.78% and improves F1 by 20.14% over strong baselines. These results show that principled decision-theoretic gating, paired with selective slow reasoning and aligned distillation, yields proactive agents that are precise, computationally efficient, and controllable. To facilitate reproducibility, we release our code, models, and resources at https://prism-festinalente.github.io/; all experiments use the open-source ProactiveBench benchmark.

  • 5 authors
·
Feb 1

Towards Deeper, Lighter and Interpretable Cross Network for CTR Prediction

Click Through Rate (CTR) prediction plays an essential role in recommender systems and online advertising. It is crucial to effectively model feature interactions to improve the prediction performance of CTR models. However, existing methods face three significant challenges. First, while most methods can automatically capture high-order feature interactions, their performance tends to diminish as the order of feature interactions increases. Second, existing methods lack the ability to provide convincing interpretations of the prediction results, especially for high-order feature interactions, which limits the trustworthiness of their predictions. Third, many methods suffer from the presence of redundant parameters, particularly in the embedding layer. This paper proposes a novel method called Gated Deep Cross Network (GDCN) and a Field-level Dimension Optimization (FDO) approach to address these challenges. As the core structure of GDCN, Gated Cross Network (GCN) captures explicit high-order feature interactions and dynamically filters important interactions with an information gate in each order. Additionally, we use the FDO approach to learn condensed dimensions for each field based on their importance. Comprehensive experiments on five datasets demonstrate the effectiveness, superiority and interpretability of GDCN. Moreover, we verify the effectiveness of FDO in learning various dimensions and reducing model parameters. The code is available on https://github.com/anonctr/GDCN.

  • 6 authors
·
Nov 8, 2023

Learning to Route Among Specialized Experts for Zero-Shot Generalization

Recently, there has been a widespread proliferation of "expert" language models that are specialized to a specific task or domain through parameter-efficient fine-tuning. How can we recycle large collections of expert language models to improve zero-shot generalization to unseen tasks? In this work, we propose Post-Hoc Adaptive Tokenwise Gating Over an Ocean of Specialized Experts (PHATGOOSE), which learns to route among specialized modules that were produced through parameter-efficient fine-tuning. Unlike past methods that learn to route among specialized models, PHATGOOSE explores the possibility that zero-shot generalization will be improved if different experts can be adaptively chosen for each token and at each layer in the model. Crucially, our method is post-hoc - it does not require simultaneous access to the datasets used to create the specialized models and only requires a modest amount of additional compute after each expert model is trained. In experiments covering a range of specialized model collections and zero-shot generalization benchmarks, we find that PHATGOOSE outperforms past methods for post-hoc routing and, in some cases, outperforms explicit multitask training (which requires simultaneous data access). To better understand the routing strategy learned by PHATGOOSE, we perform qualitative experiments to validate that PHATGOOSE's performance stems from its ability to make adaptive per-token and per-module expert choices. We release all of our code to support future work on improving zero-shot generalization by recycling specialized experts.

  • 4 authors
·
Feb 8, 2024 2

RSQ: Learning from Important Tokens Leads to Better Quantized LLMs

Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining. Previous methods typically quantize the weights of each layer by "uniformly" optimizing the layer reconstruction loss across all output tokens. However, in this paper, we demonstrate that better-quantized models can be obtained by prioritizing learning from important tokens (e.g. which have large attention scores). Building on this finding, we propose RSQ (Rotate, Scale, then Quantize), which (1) applies rotations (orthogonal transformation) to the model to mitigate outliers (those with exceptionally large magnitude), (2) scales the token feature based on its importance, and (3) quantizes the model using the GPTQ framework with the second-order statistics computed by scaled tokens. To compute token importance, we explore both heuristic and dynamic strategies. Based on a thorough analysis of all approaches, we adopt attention concentration, which uses attention scores of each token as its importance, as the best approach. We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families: LLaMA3, Mistral, and Qwen2.5. Additionally, models quantized with RSQ achieve superior performance on long-context tasks, further highlighting its effectiveness. Lastly, RSQ demonstrates generalizability across various setups, including different model sizes, calibration datasets, bit precisions, and quantization methods.

  • 5 authors
·
Mar 3, 2025 3

Transformer brain encoders explain human high-level visual responses

A major goal of neuroscience is to understand brain computations during visual processing in naturalistic settings. A dominant approach is to use image-computable deep neural networks trained with different task objectives as a basis for linear encoding models. However, in addition to requiring tuning a large number of parameters, the linear encoding approach ignores the structure of the feature maps both in the brain and the models. Recently proposed alternatives have focused on decomposing the linear mapping to spatial and feature components but focus on finding static receptive fields for units that are applicable only in early visual areas. In this work, we employ the attention mechanism used in the transformer architecture to study how retinotopic visual features can be dynamically routed to category-selective areas in high-level visual processing. We show that this computational motif is significantly more powerful than alternative methods in predicting brain activity during natural scene viewing, across different feature basis models and modalities. We also show that this approach is inherently more interpretable, without the need to create importance maps, by interpreting the attention routing signal for different high-level categorical areas. Our approach proposes a mechanistic model of how visual information from retinotopic maps can be routed based on the relevance of the input content to different category-selective regions.

  • 3 authors
·
May 22, 2025

Capturing Gaze Shifts for Guidance: Cross-Modal Fusion Enhancement for VLM Hallucination Mitigation

Vision language models (VLMs) often generate hallucination, i.e., content that cannot be substantiated by either textual or visual inputs. Prior work primarily attributes this to over-reliance on linguistic prior knowledge rather than visual inputs. Some methods attempt to mitigate hallucination by amplifying visual token attention proportionally to their attention scores. However, these methods overlook the visual attention sink problem, where attention is frequently misallocated to task-irrelevant visual regions, and neglect cross-modal fusion balance by enhancing only visual attention without adjusting attention to the user query. This can result in amplifying incorrect areas while failing to properly interpret the user query. To address these challenges, we propose a simple yet effective method called Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT). GIFT pre-computes a holistic visual saliency map by tracking positive changes in visual attention, or "gaze shifts", during user query comprehension, and leverages this map to amplify attention to both salient visual information and the user query at each decoding step. This reduces the impact of visual attention sink, as irrelevant tokens exhibit minimal shifts, while ensuring balanced cross-modal fusion for well-integrated representation. Extensive experiments show that GIFT effectively mitigates hallucination in VLMs across both generative and classification tasks, achieving up to 20.7% improvement over greedy decoding, while maintaining general vision-language performance with low computational overhead.

  • 4 authors
·
Oct 24, 2025

Oscillation-free Quantization for Low-bit Vision Transformers

Weight oscillation is an undesirable side effect of quantization-aware training, in which quantized weights frequently jump between two quantized levels, resulting in training instability and a sub-optimal final model. We discover that the learnable scaling factor, a widely-used de facto setting in quantization aggravates weight oscillation. In this study, we investigate the connection between the learnable scaling factor and quantized weight oscillation and use ViT as a case driver to illustrate the findings and remedies. In addition, we also found that the interdependence between quantized weights in query and key of a self-attention layer makes ViT vulnerable to oscillation. We, therefore, propose three techniques accordingly: statistical weight quantization (rm StatsQ) to improve quantization robustness compared to the prevalent learnable-scale-based method; confidence-guided annealing (rm CGA) that freezes the weights with high confidence and calms the oscillating weights; and query-key reparameterization (rm QKR) to resolve the query-key intertwined oscillation and mitigate the resulting gradient misestimation. Extensive experiments demonstrate that these proposed techniques successfully abate weight oscillation and consistently achieve substantial accuracy improvement on ImageNet. Specifically, our 2-bit DeiT-T/DeiT-S algorithms outperform the previous state-of-the-art by 9.8% and 7.7%, respectively. Code and models are available at: https://github.com/nbasyl/OFQ.

  • 3 authors
·
Feb 4, 2023

Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation

We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.

  • 5 authors
·
Nov 22, 2022

Entropy-Guided Attention for Private LLMs

The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm{entropy-guided-llm}.

  • 2 authors
·
Jan 6, 2025 8

A Mixture of Expert Approach for Low-Cost Customization of Deep Neural Networks

The ability to customize a trained Deep Neural Network (DNN) locally using user-specific data may greatly enhance user experiences, reduce development costs, and protect user's privacy. In this work, we propose to incorporate a novel Mixture of Experts (MOE) approach to accomplish this goal. This architecture comprises of a Global Expert (GE), a Local Expert (LE) and a Gating Network (GN). The GE is a trained DNN developed on a large training dataset representative of many potential users. After deployment on an embedded edge device, GE will be subject to customized, user-specific data (e.g., accent in speech) and its performance may suffer. This problem may be alleviated by training a local DNN (the local expert, LE) on a small size customized training data to correct the errors made by GE. A gating network then will be trained to determine whether an incoming data should be handled by GE or LE. Since the customized dataset is in general very small, the cost of training LE and GN would be much lower than that of re-training of GE. The training of LE and GN thus can be performed at local device, properly protecting the privacy of customized training data. In this work, we developed a prototype MOE architecture for handwritten alphanumeric character recognition task. We use EMNIST as the generic dataset, LeNet5 as GE, and handwritings of 10 users as the customized dataset. We show that with the LE and GN, the classification accuracy is significantly enhanced over the customized dataset with almost no degradation of accuracy over the generic dataset. In terms of energy and network size, the overhead of LE and GN is around 2.5% compared to those of GE.

  • 3 authors
·
Oct 31, 2018

Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction

Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.

  • 4 authors
·
Oct 15, 2021

Attention Weighted Mixture of Experts with Contrastive Learning for Personalized Ranking in E-commerce

Ranking model plays an essential role in e-commerce search and recommendation. An effective ranking model should give a personalized ranking list for each user according to the user preference. Existing algorithms usually extract a user representation vector from the user behavior sequence, then feed the vector into a feed-forward network (FFN) together with other features for feature interactions, and finally produce a personalized ranking score. Despite tremendous progress in the past, there is still room for improvement. Firstly, the personalized patterns of feature interactions for different users are not explicitly modeled. Secondly, most of existing algorithms have poor personalized ranking results for long-tail users with few historical behaviors due to the data sparsity. To overcome the two challenges, we propose Attention Weighted Mixture of Experts (AW-MoE) with contrastive learning for personalized ranking. Firstly, AW-MoE leverages the MoE framework to capture personalized feature interactions for different users. To model the user preference, the user behavior sequence is simultaneously fed into expert networks and the gate network. Within the gate network, one gate unit and one activation unit are designed to adaptively learn the fine-grained activation vector for experts using an attention mechanism. Secondly, a random masking strategy is applied to the user behavior sequence to simulate long-tail users, and an auxiliary contrastive loss is imposed to the output of the gate network to improve the model generalization for these users. This is validated by a higher performance gain on the long-tail user test set. Experiment results on a JD real production dataset and a public dataset demonstrate the effectiveness of AW-MoE, which significantly outperforms state-of-art methods. Notably, AW-MoE has been successfully deployed in the JD e-commerce search engine, ...

  • 10 authors
·
Jun 8, 2023

A Unified View of Attention and Residual Sinks: Outlier-Driven Rescaling is Essential for Transformer Training

We investigate the functional role of emergent outliers in large language models, specifically attention sinks (a few tokens that consistently receive large attention logits) and residual sinks (a few fixed dimensions with persistently large activations across most tokens). We hypothesize that these outliers, in conjunction with the corresponding normalizations (e.g., softmax attention and RMSNorm), effectively rescale other non-outlier components. We term this phenomenon outlier-driven rescaling and validate this hypothesis across different model architectures and training token counts. This view unifies the origin and mitigation of both sink types. Our main conclusions and observations include: (1) Outliers function jointly with normalization: removing normalization eliminates the corresponding outliers but degrades training stability and performance; directly clipping outliers while retaining normalization leads to degradation, indicating that outlier-driven rescaling contributes to training stability. (2) Outliers serve more as rescale factors rather than contributors, as the final contributions of attention and residual sinks are significantly smaller than those of non-outliers. (3) Outliers can be absorbed into learnable parameters or mitigated via explicit gated rescaling, leading to improved training performance (average gain of 2 points) and enhanced quantization robustness (1.2 points degradation under W4A4 quantization).

  • 19 authors
·
Jan 30

Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations

There has been a recent surge of interest in time series modeling using the Transformer architecture. However, forecasting multivariate time series with Transformer presents a unique challenge as it requires modeling both temporal (cross-time) and variate (cross-variate) dependencies. While Transformer-based models have gained popularity for their flexibility in capturing both sequential and cross-variate relationships, it is unclear how to best integrate these two sources of information in the context of the Transformer architecture while optimizing for both performance and efficiency. We re-purpose the Transformer architecture to effectively model both cross-time and cross-variate dependencies. Our approach begins by embedding each variate independently into a variate-wise representation that captures its cross-time dynamics, and then models cross-variate dependencies through attention mechanisms on these learned embeddings. Gating operations in both cross-time and cross-variate modeling phases regulate information flow, allowing the model to focus on the most relevant features for accurate predictions. Our method achieves state-of-the-art performance across 13 real-world datasets and can be seamlessly integrated into other Transformer-based and LLM-based forecasters, delivering performance improvements up to 20.7\% over original models. Code is available at this repository: https://github.com/nyuolab/Gateformer.

  • 2 authors
·
May 1, 2025

Joint encoding of "what" and "when" predictions through error-modulated plasticity in reservoir spiking networks

The brain understands the external world through an internal model that generates predictions and refines them based on prediction errors. A complete prediction specifies what will happen, when it will happen, and with what probability, which we refer to as a "prediction object". Existing models typically capture only what and when, omit probabilities, and rely on biologically-implausible algorithms. Here we show that a single population of spiking neurons can jointly encode the prediction object through a biologically grounded learning mechanism. We implement a heterogeneous Izhikevich spiking reservoir with readouts trained by an error-modulated, attention-gated three-factor Hebbian rule and test it on a novel paradigm that controls both the timing and probability of upcoming stimuli. By integrating real-time learning of "when" with offline consolidation of "what", the model encodes the complete prediction object, firing at the correct times with magnitudes proportional to the probabilities. Critically, it rapidly adapts to changes in both stimulus timing and probability, an ability that global least-squares methods such as FORCE lack without explicit resets. During learning, the model self-organizes its readout weights into near-orthogonal subspaces for "what" and "when," showing that multiplexed encoding arises naturally from generic recurrent dynamics under local, error-gated modulation. These results challenge the view that "what" and "when" predictions require separate modules, suggesting instead that mixed selectivity within shared populations supports flexible predictive cognition. The model also predicts phase-specific neuromodulation and overlapping neural subspaces, offering a parsimonious alternative to hierarchical predictive-coding accounts.

  • 2 authors
·
Oct 16, 2025

Sealing The Backdoor: Unlearning Adversarial Text Triggers In Diffusion Models Using Knowledge Distillation

Text-to-image diffusion models have revolutionized generative AI, but their vulnerability to backdoor attacks poses significant security risks. Adversaries can inject imperceptible textual triggers into training data, causing models to generate manipulated outputs. Although text-based backdoor defenses in classification models are well-explored, generative models lack effective mitigation techniques against. We address this by selectively erasing the model's learned associations between adversarial text triggers and poisoned outputs, while preserving overall generation quality. Our approach, Self-Knowledge Distillation with Cross-Attention Guidance (SKD-CAG), uses knowledge distillation to guide the model in correcting responses to poisoned prompts while maintaining image quality by exploiting the fact that the backdoored model still produces clean outputs in the absence of triggers. Using the cross-attention mechanism, SKD-CAG neutralizes backdoor influences at the attention level, ensuring the targeted removal of adversarial effects. Extensive experiments show that our method outperforms existing approaches, achieving removal accuracy 100\% for pixel backdoors and 93\% for style-based attacks, without sacrificing robustness or image fidelity. Our findings highlight targeted unlearning as a promising defense to secure generative models. Code and model weights can be found at https://github.com/Mystic-Slice/Sealing-The-Backdoor .

  • 5 authors
·
Aug 19, 2025

Think Twice, Click Once: Enhancing GUI Grounding via Fast and Slow Systems

Humans can flexibly switch between different modes of thinking based on task complexity: from rapid intuitive judgments to in-depth analytical understanding. However, current Graphical User Interface (GUI) grounding systems which locate interface elements based on natural language instructions rely solely on immediate prediction without reasoning, struggling to understand complex interface layouts with nested structures and hierarchical relationships, limiting their effectiveness on complex interfaces. Inspired by human dual-system cognition, we present Focus, a novel GUI grounding framework that combines fast prediction with systematic analysis. The framework dynamically switches between rapid and deliberate processing through an adaptive system switching based on task complexity, optimizing both efficiency and accuracy. Focus decomposes grounding into progressive stages: interface summarization, visual focused analysis, and precise coordinate prediction. This structured decomposition enables systematic understanding of both interface layouts and visual relationships. Extensive experiments show that Focus achieves state-of-the-art performance using only 300K of the training data with a 2B parameter model compared to existing approaches. Focus demonstrates superior performance particularly in complex GUI scenarios, achieving 77.4% average accuracy on ScreenSpot and 13.3% on the more challenging ScreenSpot-Pro. Our analysis reveals the effectiveness of this dual-system approach while demonstrating its potential for improving complex GUI interaction scenarios.

  • 10 authors
·
Mar 9, 2025