new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Sketch to Adapt: Fine-Tunable Sketches for Efficient LLM Adaptation

Adapting pre-trained large language models (LLMs) is crucial but challenging due to their enormous size. Parameter-efficient fine-tuning (PEFT) techniques typically employ additive adapters applied to frozen model weights. To further reduce memory usage, model weights can be compressed through quantization. However, existing PEFT methods often yield suboptimal model quality due to restrictive assumptions, such as imposing low-rank constraints on adapters to reduce trainable parameters. We find that sketching, a popular data compression technique, can serve as an efficient adaptation strategy for LLMs while avoiding low-rank assumptions. We introduce SketchTune, a compressive adaptation strategy that compresses LLM weights into compact fine-tunable sketches, integrating compression and adaptation into a unified framework. This integration eliminates the need for complex two-path computation common in existing PEFT techniques, enabling faster and more memory-efficient training and inference. SketchTune is supported by mathematical insights into matrix classes that are better approximated using sketching rather than low-rank methods. Our rigorous evaluations with Llama-1/2/3 models demonstrate that SketchTune outperforms leading PEFT methods across diverse tasks including math problem-solving, common sense reasoning, and instruction following, while using substantially smaller base models and comparable trainable parameters. As a highlight, SketchTune outperforms LoRA, DoRA, and S2FT on commonsense and math benchmarks using 2.6-3.5times smaller base models and exceeds LoftQ in accuracy by 14.48% on GSM8K with 7.3times fewer trainable parameters.

  • 6 authors
·
Oct 8, 2024

Low-Rank Quantization-Aware Training for LLMs

Large language models (LLMs) are omnipresent, however their practical deployment is challenging due to their ever increasing computational and memory demands. Quantization is one of the most effective ways to make them more compute and memory efficient. Quantization-aware training (QAT) methods, generally produce the best quantized performance, however it comes at the cost of potentially long training time and excessive memory usage, making it impractical when applying for LLMs. Inspired by parameter-efficient fine-tuning (PEFT) and low-rank adaptation (LoRA) literature, we propose LR-QAT -- a lightweight and memory-efficient QAT algorithm for LLMs. LR-QAT employs several components to save memory without sacrificing predictive performance: (a) low-rank auxiliary weights that are aware of the quantization grid; (b) a downcasting operator using fixed-point or double-packed integers and (c) checkpointing. Unlike most related work, our method (i) is inference-efficient, leading to no additional overhead compared to traditional PTQ; (ii) can be seen as a general extended pretraining framework, meaning that the resulting model can still be utilized for any downstream task afterwards; (iii) can be applied across a wide range of quantization settings, such as different choices quantization granularity, activation quantization, and seamlessly combined with many PTQ techniques. We apply LR-QAT to LLaMA-1/2/3 and Mistral model families and validate its effectiveness on several downstream tasks. Our method outperforms common post-training quantization (PTQ) approaches and reaches the same model performance as full-model QAT at the fraction of its memory usage. Specifically, we can train a 7B LLM on a single consumer grade GPU with 24GB of memory. Our source code is available at https://github.com/qualcomm-ai-research/LR-QAT

  • 3 authors
·
Jun 10, 2024

BioInstruct: Instruction Tuning of Large Language Models for Biomedical Natural Language Processing

To enhance the performance of large language models (LLMs) in biomedical natural language processing (BioNLP) by introducing a domain-specific instruction dataset and examining its impact when combined with multi-task learning principles. We created the BioInstruct, comprising 25,005 instructions to instruction-tune LLMs(LLaMA 1 & 2, 7B & 13B version). The instructions were created by prompting the GPT-4 language model with three-seed samples randomly drawn from an 80 human curated instructions. We employed Low-Rank Adaptation(LoRA) for parameter-efficient fine-tuning. We then evaluated these instruction-tuned LLMs on several BioNLP tasks, which can be grouped into three major categories: question answering(QA), information extraction(IE), and text generation(GEN). We also examined whether categories(e.g., QA, IE, and generation) of instructions impact model performance. Comparing with LLMs without instruction-tuned, our instruction-tuned LLMs demonstrated marked performance gains: 17.3% in QA, 5.7% in IE, and 96% in Generation tasks. Our 7B-parameter instruction-tuned LLaMA 1 model was competitive or even surpassed other LLMs in the biomedical domain that were also fine-tuned from LLaMA 1 with vast domain-specific data or a variety of tasks. Our results also show that the performance gain is significantly higher when instruction fine-tuning is conducted with closely related tasks. Our findings align with the observations of multi-task learning, suggesting the synergies between two tasks. The BioInstruct dataset serves as a valuable resource and instruction tuned LLMs lead to the best performing BioNLP applications.

  • 4 authors
·
Oct 30, 2023

Beyond Size: How Gradients Shape Pruning Decisions in Large Language Models

Large Language Models (LLMs) with a billion or more parameters are prime targets for network pruning, which aims to reduce a portion of the network weights without compromising performance. Prior approaches such as Weights Magnitude, SparseGPT, and Wanda, either concentrated solely on weights or integrated weights with activations for sparsity. However, they overlooked the informative gradients derived from pretrained large language models. In this paper, we present a novel sparsity-centric pruning method for pretrained LLMs, termed Gradient-based Language Model Pruner (GBLM-Pruner). GBLM-Pruner leverages the first-order term of the Taylor expansion, operating in a training-free manner by harnessing properly normalized gradients from a few calibration samples to determine the importance pruning score, and substantially outperforms competitive counterparts like SparseGPT and Wanda in multiple benchmarks. Intriguing, after incorporating gradients, the unstructured pruning method tends to reveal some structural patterns post-pruning, which mirrors the geometric interdependence inherent in the LLMs' parameter structure. Additionally, GBLM-Pruner functions without any subsequent retraining or weight updates to maintain its simplicity as other counterparts. Extensive evaluations on LLaMA-1 and LLaMA-2 across various language benchmarks and perplexity show that GBLM-Pruner surpasses magnitude pruning, Wanda (weights+activations) and SparseGPT (weights+activations+weight update) by significant margins. Our code and models are available at https://github.com/RocktimJyotiDas/GBLM-Pruner.

  • 3 authors
·
Nov 8, 2023

QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models

Large Language Models (LLMs) excel in NLP, but their demands hinder their widespread deployment. While Quantization-Aware Training (QAT) offers a solution, its extensive training costs make Post-Training Quantization (PTQ) a more practical approach for LLMs. In existing studies, activation outliers in particular channels are identified as the bottleneck to PTQ accuracy. They propose to transform the magnitudes from activations to weights, which however offers limited alleviation or suffers from unstable gradients, resulting in a severe performance drop at low-bitwidth. In this paper, we propose QLLM, an accurate and efficient low-bitwidth PTQ method designed for LLMs. QLLM introduces an adaptive channel reassembly technique that reallocates the magnitude of outliers to other channels, thereby mitigating their impact on the quantization range. This is achieved by channel disassembly and channel assembly, which first breaks down the outlier channels into several sub-channels to ensure a more balanced distribution of activation magnitudes. Then similar channels are merged to maintain the original channel number for efficiency. Additionally, an adaptive strategy is designed to autonomously determine the optimal number of sub-channels for channel disassembly. To further compensate for the performance loss caused by quantization, we propose an efficient tuning method that only learns a small number of low-rank weights while freezing the pre-trained quantized model. After training, these low-rank parameters can be fused into the frozen weights without affecting inference. Extensive experiments on LLaMA-1 and LLaMA-2 show that QLLM can obtain accurate quantized models efficiently. For example, QLLM quantizes the 4-bit LLaMA-2-70B within 10 hours on a single A100-80G GPU, outperforming the previous state-of-the-art method by 7.89% on the average accuracy across five zero-shot tasks.

  • 6 authors
·
Oct 12, 2023

PARAMANU-GANITA: Language Model with Mathematical Capabilities

In this paper, we present Paramanu-Ganita, a 208 million parameter novel Auto Regressive (AR) decoder based language model on mathematics. The model is pretrained from scratch at context size of 4096 on our curated mixed mathematical corpus. We evaluate our model on both perplexity metric and GSM8k mathematical benchmark. Paramanu-Ganita despite being 35 times smaller than 7B LLMs, outperformed generalist LLMs such as LLaMa-1 7B by 28.4% points, LLaMa-2 7B by 27.6% points, Falcon 7B by 32.6% points, PaLM 8B by 35.3% points, and math specialised LLMs such as Minerva 8B by 23.2% points, and LLEMMA-7B by 3.0% points in GSM8k test accuracy metric respectively. Paramanu-Ganita also outperformed giant LLMs like PaLM 62B by 6.4% points, Falcon 40B by 19.8% points, LLaMa-1 33B by 3.8% points and Vicuna 13B by 11.8% points respectively. The large significant margin improvement in performance of our math model over the existing LLMs signifies that reasoning capabilities of language model are just not restricted to LLMs with humongous number of parameters. Paramanu-Ganita took 146 hours of A100 training whereas math specialised LLM, LLEMMA 7B, was trained for 23,000 A100 hours of training equivalent. Thus, our approach of pretraining powerful domain specialised language models from scratch for domain adaptation is much more cost-effective than performing continual training of LLMs for domain adaptation. Hence, we conclude that for strong mathematical reasoning abilities of language model, we do not need giant LLMs and immense computing power to our end. In the end, we want to point out that we have only trained Paramanu-Ganita only on a part of our entire mathematical corpus and yet to explore the full potential of our model.

  • 2 authors
·
Apr 22, 2024

MUSCLE: A Model Update Strategy for Compatible LLM Evolution

Large Language Models (LLMs) are frequently updated due to data or architecture changes to improve their performance. When updating models, developers often focus on increasing overall performance metrics with less emphasis on being compatible with previous model versions. However, users often build a mental model of the functionality and capabilities of a particular machine learning model they are interacting with. They have to adapt their mental model with every update -- a draining task that can lead to user dissatisfaction. In practice, fine-tuned downstream task adapters rely on pretrained LLM base models. When these base models are updated, these user-facing downstream task models experience instance regression or negative flips -- previously correct instances are now predicted incorrectly. This happens even when the downstream task training procedures remain identical. Our work aims to provide seamless model updates to a user in two ways. First, we provide evaluation metrics for a notion of compatibility to prior model versions, specifically for generative tasks but also applicable for discriminative tasks. We observe regression and inconsistencies between different model versions on a diverse set of tasks and model updates. Second, we propose a training strategy to minimize the number of inconsistencies in model updates, involving training of a compatibility model that can enhance task fine-tuned language models. We reduce negative flips -- instances where a prior model version was correct, but a new model incorrect -- by up to 40% from Llama 1 to Llama 2.

  • 7 authors
·
Jul 12, 2024 2

Emulated Disalignment: Safety Alignment for Large Language Models May Backfire!

Large language models (LLMs) undergo safety alignment to ensure safe conversations with humans. However, this paper introduces a training-free attack method capable of reversing safety alignment, converting the outcomes of stronger alignment into greater potential for harm by accessing only LLM output token distributions. Specifically, our method achieves this reversal by contrasting the output token distribution of a safety-aligned language model (e.g., Llama-2-chat) against its pre-trained version (e.g., Llama-2), so that the token predictions are shifted towards the opposite direction of safety alignment. We name this method emulated disalignment (ED) because sampling from this contrastive distribution provably emulates the result of fine-tuning to minimize a safety reward. Our experiments with ED across three evaluation datasets and four model families (Llama-1, Llama-2, Mistral, and Alpaca) show that ED doubles the harmfulness of pre-trained models and outperforms strong baselines, achieving the highest harmful rates in 43 out of 48 evaluation subsets by a large margin. Eventually, given ED's reliance on language model output token distributions, which particularly compromises open-source models, our findings highlight the need to reassess the open accessibility of language models, even if they have been safety-aligned. Code is available at https://github.com/ZHZisZZ/emulated-disalignment.

  • 7 authors
·
Feb 19, 2024

The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A"

We expose a surprising failure of generalization in auto-regressive large language models (LLMs). If a model is trained on a sentence of the form "A is B", it will not automatically generalize to the reverse direction "B is A". This is the Reversal Curse. For instance, if a model is trained on "Olaf Scholz was the ninth Chancellor of Germany", it will not automatically be able to answer the question, "Who was the ninth Chancellor of Germany?". Moreover, the likelihood of the correct answer ("Olaf Scholz") will not be higher than for a random name. Thus, models exhibit a basic failure of logical deduction and do not generalize a prevalent pattern in their training set (i.e. if "A is B'' occurs, "B is A" is more likely to occur). We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1 on fictitious statements such as "Uriah Hawthorne is the composer of 'Abyssal Melodies'" and showing that they fail to correctly answer "Who composed 'Abyssal Melodies?'". The Reversal Curse is robust across model sizes and model families and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-3.5 and GPT-4) on questions about real-world celebrities, such as "Who is Tom Cruise's mother? [A: Mary Lee Pfeiffer]" and the reverse "Who is Mary Lee Pfeiffer's son?". GPT-4 correctly answers questions like the former 79% of the time, compared to 33% for the latter. This shows a failure of logical deduction that we hypothesize is caused by the Reversal Curse. Code is available at https://github.com/lukasberglund/reversal_curse.

  • 7 authors
·
Sep 21, 2023

LexiMark: Robust Watermarking via Lexical Substitutions to Enhance Membership Verification of an LLM's Textual Training Data

Large language models (LLMs) can be trained or fine-tuned on data obtained without the owner's consent. Verifying whether a specific LLM was trained on particular data instances or an entire dataset is extremely challenging. Dataset watermarking addresses this by embedding identifiable modifications in training data to detect unauthorized use. However, existing methods often lack stealth, making them relatively easy to detect and remove. In light of these limitations, we propose LexiMark, a novel watermarking technique designed for text and documents, which embeds synonym substitutions for carefully selected high-entropy words. Our method aims to enhance an LLM's memorization capabilities on the watermarked text without altering the semantic integrity of the text. As a result, the watermark is difficult to detect, blending seamlessly into the text with no visible markers, and is resistant to removal due to its subtle, contextually appropriate substitutions that evade automated and manual detection. We evaluated our method using baseline datasets from recent studies and seven open-source models: LLaMA-1 7B, LLaMA-3 8B, Mistral 7B, Pythia 6.9B, as well as three smaller variants from the Pythia family (160M, 410M, and 1B). Our evaluation spans multiple training settings, including continued pretraining and fine-tuning scenarios. The results demonstrate significant improvements in AUROC scores compared to existing methods, underscoring our method's effectiveness in reliably verifying whether unauthorized watermarked data was used in LLM training.

  • 5 authors
·
Jun 17

PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression

There has been significant interest in "extreme" compression of large language models (LLMs), i.e., to 1-2 bits per parameter, which allows such models to be executed efficiently on resource-constrained devices. Existing work focused on improved one-shot quantization techniques and weight representations; yet, purely post-training approaches are reaching diminishing returns in terms of the accuracy-vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and AQLM include fine-tuning (part of) the compressed parameters over a limited amount of calibration data; however, such fine-tuning techniques over compressed weights often make exclusive use of straight-through estimators (STE), whose performance is not well-understood in this setting. In this work, we question the use of STE for extreme LLM compression, showing that it can be sub-optimal, and perform a systematic study of quantization-aware fine-tuning strategies for LLMs. We propose PV-Tuning - a representation-agnostic framework that generalizes and improves upon existing fine-tuning strategies, and provides convergence guarantees in restricted cases. On the practical side, when used for 1-2 bit vector quantization, PV-Tuning outperforms prior techniques for highly-performant models such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal quantization for Llama 2 family models at 2 bits per parameter.

  • 8 authors
·
May 23, 2024

HelpSteer2-Preference: Complementing Ratings with Preferences

Reward models are critical for aligning models to follow instructions, and are typically trained following one of two popular paradigms: Bradley-Terry style or Regression style. However, there is a lack of evidence that either approach is better than the other, when adequately matched for data. This is primarily because these approaches require data collected in different (but incompatible) formats, meaning that adequately matched data is not available in existing public datasets. To tackle this problem, we release preference annotations (designed for Bradley-Terry training) to complement existing ratings (designed for Regression style training) in the HelpSteer2 dataset. To improve data interpretability, preference annotations are accompanied with human-written justifications. Using this data, we conduct the first head-to-head comparison of Bradley-Terry and Regression models when adequately matched for data. Based on insights derived from such a comparison, we propose a novel approach to combine Bradley-Terry and Regression reward modeling. A Llama-3.1-70B-Instruct model tuned with this approach scores 94.1 on RewardBench, emerging top of more than 140 reward models as of 1 Oct 2024. We also demonstrate the effectiveness of this reward model at aligning models to follow instructions in RLHF. We open-source this dataset (CC-BY-4.0 license) at https://huggingface.co/datasets/nvidia/HelpSteer2 and openly release the trained Reward Model at https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward

  • 8 authors
·
Oct 2, 2024 5

CrossQuant: A Post-Training Quantization Method with Smaller Quantization Kernel for Precise Large Language Model Compression

Post-Training Quantization (PTQ) is an effective technique for compressing Large Language Models (LLMs). While many studies focus on quantizing both weights and activations, it is still a challenge to maintain the accuracy of LLM after activating quantization. To investigate the primary cause, we extend the concept of kernel from linear algebra to quantization functions to define a new term, "quantization kernel", which refers to the set of elements in activations that are quantized to zero. Through quantitative analysis of the quantization kernel, we find that these elements are crucial for maintaining the accuracy of quantized LLMs. With the decrease of quantization kernel, the precision of quantized LLMs increases. If the quantization kernel proportion is kept below 19% for OPT models and below 1% for LLaMA models, the precision loss from quantizing activations to INT8 becomes negligible. Motivated by the goal of developing a quantization method with small quantization kernel, we propose CrossQuant: a simple yet effective method for quantizing activations. CrossQuant cross-quantizes elements using row and column-wise absolute maximum vectors, achieving a quantization kernel of approximately 16% for OPT models and less than 0.1% for LLaMA models. Experimental results on LLMs (LLaMA, OPT) ranging from 6.7B to 70B parameters demonstrate that CrossQuant improves or maintains perplexity and accuracy in language modeling, zero-shot, and few-shot tasks.

  • 4 authors
·
Oct 9, 2024

LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B

AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.

  • 3 authors
·
Oct 31, 2023 9

Making LLaMA SEE and Draw with SEED Tokenizer

The great success of Large Language Models (LLMs) has expanded the potential of multimodality, contributing to the gradual evolution of General Artificial Intelligence (AGI). A true AGI agent should not only possess the capability to perform predefined multi-tasks but also exhibit emergent abilities in an open-world context. However, despite the considerable advancements made by recent multimodal LLMs, they still fall short in effectively unifying comprehension and generation tasks, let alone open-world emergent abilities. We contend that the key to overcoming the present impasse lies in enabling text and images to be represented and processed interchangeably within a unified autoregressive Transformer. To this end, we introduce SEED, an elaborate image tokenizer that empowers LLMs with the ability to SEE and Draw at the same time. We identify two crucial design principles: (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. With SEED tokens, LLM is able to perform scalable multimodal autoregression under its original training recipe, i.e., next-word prediction. SEED-LLaMA is therefore produced by large-scale pretraining and instruction tuning on the interleaved textual and visual data, demonstrating impressive performance on a broad range of multimodal comprehension and generation tasks. More importantly, SEED-LLaMA has exhibited compositional emergent abilities such as multi-turn in-context multimodal generation, acting like your AI assistant.

  • 7 authors
·
Oct 2, 2023

Smart-LLaMA-DPO: Reinforced Large Language Model for Explainable Smart Contract Vulnerability Detection

Smart contract vulnerability detection remains a major challenge in blockchain security. Existing vulnerability detection methods face two main issues: (1) Existing datasets lack comprehensive coverage and high-quality explanations for preference learning. (2) Large language models (LLMs) often struggle with accurately interpreting specific concepts in smart contract security. Empirical analysis shows that even after continual pre-training (CPT) and supervised fine-tuning (SFT), LLMs may misinterpret the execution order of state changes, resulting in incorrect explanations despite making correct detection decisions. To address these challenges, we propose Smart-LLaMA-DPO based on LLaMA-3.1-8B. We construct a comprehensive dataset covering four major vulnerability types and machine-unauditable vulnerabilities, including precise labels, explanations, and locations for SFT, as well as high-quality and low-quality output pairs for Direct Preference Optimization (DPO). Second, we perform CPT using large-scale smart contract to enhance the LLM's understanding of specific security practices in smart contracts. Futhermore, we conduct SFT with our comprehensive dataset. Finally, we apply DPO, leveraging human feedback and a specially designed loss function that increases the probability of preferred explanations while reducing the likelihood of non-preferred outputs. We evaluate Smart-LLaMA-DPO on four major vulnerability types: reentrancy, timestamp dependence, integer overflow/underflow, and delegatecall, as well as machine-unauditable vulnerabilities. Our method significantly outperforms state-of-the-art baselines, with average improvements of 10.43% in F1 score and 7.87% in accuracy. Moreover, both LLM evaluation and human evaluation confirm that our method generates more correct, thorough, and clear explanations.

  • 11 authors
·
Jun 22

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

  • 11 authors
·
Jul 15, 2024

QuEST: Stable Training of LLMs with 1-Bit Weights and Activations

One approach to reducing the massive costs of large language models (LLMs) is the use of quantized or sparse representations for training or deployment. While post-training compression methods are very popular, the question of obtaining even more accurate compressed models by directly training over such representations, i.e., Quantization-Aware Training (QAT), is still open: for example, a recent study (arXiv:2411.04330v2) put the "optimal" bit-width at which models can be trained using QAT, while staying accuracy-competitive with standard FP16/BF16 precision, at 8-bits weights and activations. We advance this state-of-the-art via a new method called QuEST, which is Pareto-competitive with FP16, i.e., it provides better accuracy at lower model size, while training models with weights and activations in 4-bits or less. Moreover, QuEST allows stable training with 1-bit weights and activations. QuEST achieves this by improving two key aspects of QAT methods: (1) accurate and fast quantization of the (continuous) distributions of weights and activations via Hadamard normalization and MSE-optimal fitting; (2) a new trust gradient estimator based on the idea of explicitly minimizing the error between the noisy gradient computed over quantized states and the "true" (but unknown) full-precision gradient. Experiments on Llama-type architectures show that QuEST induces stable scaling laws across the entire range of hardware-supported precisions, and can be extended to sparse representations. We provide GPU kernel support showing that models produced by QuEST can be executed efficiently. Our code is available at https://github.com/IST-DASLab/QuEST.

Zebra-Llama: A Context-Aware Large Language Model for Democratizing Rare Disease Knowledge

Rare diseases present unique challenges in healthcare, often suffering from delayed diagnosis and fragmented information landscapes. The scarcity of reliable knowledge in these conditions poses a distinct challenge for Large Language Models (LLMs) in supporting clinical management and delivering precise patient information underscoring the need for focused training on these 'zebra' cases. We present Zebra-Llama, a specialized context-aware language model with high precision Retrieval Augmented Generation (RAG) capability, focusing on Ehlers-Danlos Syndrome (EDS) as our case study. EDS, affecting 1 in 5,000 individuals, exemplifies the complexities of rare diseases with its diverse symptoms, multiple subtypes, and evolving diagnostic criteria. By implementing a novel context-aware fine-tuning methodology trained on questions derived from medical literature, patient experiences, and clinical resources, along with expertly curated responses, Zebra-Llama demonstrates unprecedented capabilities in handling EDS-related queries. On a test set of real-world questions collected from EDS patients and clinicians, medical experts evaluated the responses generated by both models, revealing Zebra-Llama's substantial improvements over base model (Llama 3.1-8B-Instruct) in thoroughness (77.5% vs. 70.1%), accuracy (83.0% vs. 78.8%), clarity (74.7% vs. 72.0%) and citation reliability (70.6% vs. 52.3%). Released as an open-source resource, Zebra-Llama not only provides more accessible and reliable EDS information but also establishes a framework for developing specialized AI solutions for other rare conditions. This work represents a crucial step towards democratizing expert-level knowledge in rare disease management, potentially transforming how healthcare providers and patients navigate the complex landscape of rare diseases.

  • 8 authors
·
Nov 4, 2024 1

LLaMA Beyond English: An Empirical Study on Language Capability Transfer

In recent times, substantial advancements have been witnessed in large language models (LLMs), exemplified by ChatGPT, showcasing remarkable proficiency across a range of complex tasks. However, many mainstream LLMs (e.g. LLaMA) are pretrained on English-dominant corpus, which limits their performance in other non-English languages. In this paper, we focus on how to effectively transfer the capabilities of language generation and following instructions to a non-English language. To answer this question, we conduct an extensive empirical investigation based on LLaMA, accumulating over 1440 GPU hours. We analyze the impact of key factors such as vocabulary extension, further pretraining, and instruction tuning on transfer. To accurately assess the model's level of knowledge, we employ four widely used standardized testing benchmarks: C-Eval, MMLU, AGI-Eval, and GAOKAO-Bench. Furthermore, a comprehensive evaluation of the model's response quality is conducted, considering aspects such as accuracy, fluency, informativeness, logical coherence, and harmlessness, based on LLM-Eval, a benchmarks consisting instruction tasks from 17 diverse categories. Our evaluation results demonstrate that comparable performance to state-of-the-art transfer models can be achieved with less than 1% of the pretraining data, both in terms of knowledge alignment and response quality. Furthermore, the experimental outcomes across the thirteen low-resource languages also exhibit similar trends. We anticipate that the conclusions revealed by the experiments will aid the community in developing non-English LLMs.

  • 5 authors
·
Jan 2, 2024 4

Adapting LLaMA Decoder to Vision Transformer

This work examines whether decoder-only Transformers such as LLaMA, which were originally designed for large language models (LLMs), can be adapted to the computer vision field. We first "LLaMAfy" a standard ViT step-by-step to align with LLaMA's architecture, and find that directly applying a casual mask to the self-attention brings an attention collapse issue, resulting in the failure to the network training. We suggest to reposition the class token behind the image tokens with a post-sequence class token technique to overcome this challenge, enabling causal self-attention to efficiently capture the entire image's information. Additionally, we develop a soft mask strategy that gradually introduces a casual mask to the self-attention at the onset of training to facilitate the optimization behavior. The tailored model, dubbed as image LLaMA (iLLaMA), is akin to LLaMA in architecture and enables direct supervised learning. Its causal self-attention boosts computational efficiency and learns complex representation by elevating attention map ranks. iLLaMA rivals the performance with its encoder-only counterparts, achieving 75.1% ImageNet top-1 accuracy with only 5.7M parameters. Scaling the model to ~310M and pre-training on ImageNet-21K further enhances the accuracy to 86.0%. Extensive experiments demonstrate iLLaMA's reliable properties: calibration, shape-texture bias, quantization compatibility, ADE20K segmentation and CIFAR transfer learning. We hope our study can kindle fresh views to visual model design in the wave of LLMs. Pre-trained models and codes are available here.

  • 9 authors
·
Apr 10, 2024 1

LLaMA-Reviewer: Advancing Code Review Automation with Large Language Models through Parameter-Efficient Fine-Tuning

The automation of code review activities, a long-standing pursuit in software engineering, has been primarily addressed by numerous domain-specific pre-trained models. Despite their success, these models frequently demand extensive resources for pre-training from scratch. In contrast, Large Language Models (LLMs) provide an intriguing alternative, given their remarkable capabilities when supplemented with domain-specific knowledge. However, their potential for automating code review tasks remains largely unexplored. In response to this research gap, we present LLaMA-Reviewer, an innovative framework that leverages the capabilities of LLaMA, a popular LLM, in the realm of code review. Mindful of resource constraints, this framework employs parameter-efficient fine-tuning (PEFT) methods, delivering high performance while using less than 1% of trainable parameters. An extensive evaluation of LLaMA-Reviewer is conducted on two diverse, publicly available datasets. Notably, even with the smallest LLaMA base model consisting of 6.7B parameters and a limited number of tuning epochs, LLaMA-Reviewer equals the performance of existing code-review-focused models. The ablation experiments provide insights into the influence of various fine-tuning process components, including input representation, instruction tuning, and different PEFT methods. To foster continuous progress in this field, the code and all PEFT-weight plugins have been made open-source.

  • 5 authors
·
Aug 21, 2023 4

Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding

We present Video-LLaMA, a multi-modal framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video. Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual \& audio encoders and the frozen LLMs. Unlike previous vision- LLMs that focus on static image comprehensions such as MiniGPT-4~zhu2023minigpt and LLaVA~liu2023visualit, Video-LLaMA tackles two challenges in video understanding: (1) capturing the temporal changes in visual scenes, (2) integrating audio-visual signals. For the first challenge, we propose Video Q-former to extend the pre-trained image encoder to a video encoder and introduce a video-to-text generation task to learn video-language correspondence. For the second challenge, we leverage ImageBind~girdhar2023imagebind as the pre-trained audio encoder which performs exceptionally well in aligning different modalities to a common embedding space. And then introduce an Audio Q-former to learn auditory query tokens. To align the output of both visual \& audio encoder with LLM's embedding space, we train Video-LLaMA on a large-scale vision caption dataset and a hign-quantity vision-instruction-tuning dataset. We found Video-LLaMA showcases the ability to perceive and comprehend video content, generating meaningful responses that are grounded in the visual and auditory information present in the videos. This highlights the potential of Video-LLaMA as a promising prototype for audio-visual AI assistants. Our code, pre-trained model, and demo are available at https://github.com/DAMO-NLP-SG/Video-LLaMA.

  • 3 authors
·
Jun 5, 2023 9

A Llama walks into the 'Bar': Efficient Supervised Fine-Tuning for Legal Reasoning in the Multi-state Bar Exam

Legal reasoning tasks present unique challenges for large language models (LLMs) due to the complexity of domain-specific knowledge and reasoning processes. This paper investigates how effectively smaller language models (Llama 2 7B and Llama 3 8B) can be fine-tuned with a limited dataset of 1,514 Multi-state Bar Examination (MBE) questions to improve legal question answering accuracy. We evaluate these models on the 2022 MBE questions licensed from JD Advising, the same dataset used in the 'GPT-4 passes the Bar exam' study. Our methodology involves collecting approximately 200 questions per legal domain across 7 domains. We distill the dataset using Llama 3 (70B) to transform explanations into a structured IRAC (Issue, Rule, Application, Conclusion) format as a guided reasoning process to see if it results in better performance over the non-distilled dataset. We compare the non-fine-tuned models against their supervised fine-tuned (SFT) counterparts, trained for different sample sizes per domain, to study the effect on accuracy and prompt adherence. We also analyse option selection biases and their mitigation following SFT. In addition, we consolidate the performance across multiple variables: prompt type (few-shot vs zero-shot), answer ordering (chosen-option first vs generated-explanation first), response format (Numbered list vs Markdown vs JSON), and different decoding temperatures. Our findings show that domain-specific SFT helps some model configurations achieve close to human baseline performance, despite limited computational resources and a relatively small dataset. We release both the gathered SFT dataset and the family of Supervised Fine-tuned (SFT) adapters optimised for MBE performance. This establishes a practical lower bound on resources needed towards achieving effective legal question answering in smaller LLMs.

  • 4 authors
·
Apr 7

PUMA: Secure Inference of LLaMA-7B in Five Minutes

With ChatGPT as a representative, tons of companies have began to provide services based on large Transformers models. However, using such a service inevitably leak users' prompts to the model provider. Previous studies have studied secure inference for Transformer models using secure multiparty computation (MPC), where model parameters and clients' prompts are kept secret. Despite this, these frameworks are still limited in terms of model performance, efficiency, and deployment. To address these limitations, we propose framework PUMA to enable fast and secure Transformer model inference. Our framework designs high quality approximations for expensive functions, such as GeLU and Softmax, which significantly reduce the cost of secure inference while preserving the model performance. Additionally, we design secure Embedding and LayerNorm procedures that faithfully implement the desired functionality without undermining the Transformer architecture. PUMA is about 2x faster than the state-of-the-art MPC framework MPCFORMER(ICLR 2023) and has similar accuracy as plaintext models without fine-tuning (which the previous works failed to achieve). One more thing, PUMA can evaluate LLaMA-7B in around 5 minutes to generate 1 token. To our best knowledge, this is the first time that a model with such a parameter size is able to be evaluated under MPC. PUMA has been open-sourced in the Github repository of SecretFlow-SPU.

  • 10 authors
·
Jul 24, 2023

Fairy2i: Training Complex LLMs from Real LLMs with All Parameters in $\{\pm 1, \pm i\}$

Large language models (LLMs) have revolutionized artificial intelligence, yet their massive memory and computational demands necessitate aggressive quantization, increasingly pushing representations toward the theoretical limit of a single bit. While complex-valued LLMs, such as iFairy, offer a superior chance for low-bit representation compared to real-valued counterparts, they require training from scratch, preventing the utilization of the vast ecosystem of pre-trained real-valued foundation models. Here we present Fairy2i, a universal framework that transforms pre-trained real-valued layers into an equivalent widely-linear complex form, enabling extremely low-bit quantization while reusing existing checkpoints. By proving a lossless mathematical equivalence between real and widely-linear maps, we convert standard Transformers into the complex domain and employ a phase-aware quantization scheme with a highly efficient codebook of fourth roots of unity. Furthermore, we introduce a recursive residual quantization mechanism that iteratively minimizes quantization error, allowing inference to proceed via efficient multiplication-free accumulation. We demonstrate that Fairy2i restores the performance of LLaMA-2 7B at an effective 2-bit precision to levels nearly comparable with full-precision baselines, significantly outperforming state-of-the-art real-valued binary and ternary quantization methods. This work bridges the gap between the representational efficiency of complex-valued arithmetic and the practical utility of pre-trained models, paving a new way for efficient inference on commodity hardware.

  • 7 authors
·
Dec 2

High-Accuracy ECG Image Interpretation using Parameter-Efficient LoRA Fine-Tuning with Multimodal LLaMA 3.2

Electrocardiogram (ECG) interpretation is a cornerstone of cardiac diagnostics. This paper explores a practical approach to enhance ECG image interpretation using the multimodal LLaMA 3.2 model. We used a parameter-efficient fine-tuning strategy, Low-Rank Adaptation (LoRA), specifically designed to boost the model's ability to understand ECG images and achieve better outcomes across a wide range of cardiac conditions. Our method is tailored for ECG analysis and leverages ECGInstruct, a large-scale instruction dataset with 1 Million samples. This dataset is a rich collection of synthesized ECG images, generated from raw ECG data from trusted open-source repositories like MIMIC-IV ECG and PTB-XL. Each ECG image in ECGInstruct comes with expert-written questions and detailed answers, covering diverse ECG interpretation scenarios, including complex cardiac conditions like Myocardial Infarction and Conduction Disturbances. Our fine-tuning approach efficiently adapts the LLaMA 3.2 model (built upon LLaMA 3) by integrating low-rank adaptation techniques, focusing on efficiency by updating only a small set of parameters, specifically ignoring the `lm_head` and `embed_tokens` layers. This paper details the model setup, our efficient fine-tuning method, and implementation specifics. We provide a thorough evaluation through extensive experiments, demonstrating the effectiveness of our method across various ECG interpretation tasks. The results convincingly show that our parameter-efficient LoRA fine-tuning achieves excellent performance in ECG image interpretation, significantly outperforming baseline models and reaching accuracy comparable to or exceeding traditional CNN-based methods in identifying a wide range of cardiac abnormalities, including over 70 conditions from the PTB-XL dataset.

  • 2 authors
·
Jan 30

Gradient Multi-Normalization for Stateless and Scalable LLM Training

Training large language models (LLMs) typically relies on adaptive optimizers like Adam (Kingma & Ba, 2015) which store additional state information to accelerate convergence but incur significant memory overhead. Recent efforts, such as SWAN (Ma et al., 2024) address this by eliminating the need for optimizer states while achieving performance comparable to Adam via a multi-step preprocessing procedure applied to instantaneous gradients. Motivated by the success of SWAN, we introduce a novel framework for designing stateless optimizers that normalizes stochastic gradients according to multiple norms. To achieve this, we propose a simple alternating scheme to enforce the normalization of gradients w.r.t these norms. We show that our procedure can produce, up to an arbitrary precision, a fixed-point of the problem, and that SWAN is a particular instance of our approach with carefully chosen norms, providing a deeper understanding of its design. However, SWAN's computationally expensive whitening/orthogonalization step limit its practicality for large LMs. Using our principled perspective, we develop of a more efficient, scalable, and practical stateless optimizer. Our algorithm relaxes the properties of SWAN, significantly reducing its computational cost while retaining its memory efficiency, making it applicable to training large-scale models. Experiments on pre-training LLaMA models with up to 1 billion parameters demonstrate a 3X speedup over Adam with significantly reduced memory requirements, outperforming other memory-efficient baselines.

  • 4 authors
·
Feb 10

FuseChat-3.0: Preference Optimization Meets Heterogeneous Model Fusion

We introduce FuseChat-3.0, a suite of large language models (LLMs) developed by integrating the strengths of heterogeneous source LLMs into more compact target LLMs. Our source models include the powerful Gemma-2-27B-it, Mistral-Large-Instruct-2407, Qwen-2.5-72B-Instruct, and Llama-3.1-70B-Instruct. For target models, we focus on three widely-used smaller variants-Llama-3.1-8B-Instruct, Gemma-2-9B-it, and Qwen-2.5-7B-Instruct-along with two ultra-compact options, Llama-3.2-3B-Instruct and Llama-3.2-1B-Instruct. To leverage the diverse capabilities of these source models, we develop a specialized data construction protocol tailored to various tasks and domains. The FuseChat-3.0 training pipeline consists of two key stages: (1) supervised fine-tuning (SFT) to align the target and source model distributions, and (2) Direct Preference Optimization (DPO) to apply preferences from multiple source LLMs to fine-tune the target model. The resulting FuseChat-3.0 models exhibit significant performance gains across tasks such as instruction following, general knowledge, mathematics, and coding. As illustrated in Figure 1, using Llama-3.1-8B-Instruct as the target model, our fusion approach achieves an average improvement of 6.8 points across 14 benchmarks. Moreover, it demonstrates remarkable gains of 37.1 points and 30.1 points on the instruction-following benchmarks AlpacaEval-2 and Arena-Hard, respectively. Our code, models, and datasets are available at https://github.com/SLIT-AI/FuseChat-3.0.

  • 6 authors
·
Mar 6 3

DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation

Large Language Models (LLMs) have transformed listwise document reranking by enabling global reasoning over candidate sets, yet single models often struggle to balance fine-grained relevance scoring with holistic cross-document analysis. We propose DeepAgentRank (\DeAR), an open-source framework that decouples these tasks through a dual-stage approach, achieving superior accuracy and interpretability. In Stage 1, we distill token-level relevance signals from a frozen 13B LLaMA teacher into a compact \{3, 8\}B student model using a hybrid of cross-entropy, RankNet, and KL divergence losses, ensuring robust pointwise scoring. In Stage 2, we attach a second LoRA adapter and fine-tune on 20K GPT-4o-generated chain-of-thought permutations, enabling listwise reasoning with natural-language justifications. Evaluated on TREC-DL19/20, eight BEIR datasets, and NovelEval-2306, \DeAR surpasses open-source baselines by +5.1 nDCG@5 on DL20 and achieves 90.97 nDCG@10 on NovelEval, outperforming GPT-4 by +3.09. Without fine-tuning on Wikipedia, DeAR also excels in open-domain QA, achieving 54.29 Top-1 accuracy on Natural Questions, surpassing baselines like MonoT5, UPR, and RankGPT. Ablations confirm that dual-loss distillation ensures stable calibration, making \DeAR a highly effective and interpretable solution for modern reranking systems.Dataset and code available at https://github.com/DataScienceUIBK/DeAR-Reranking..

  • 4 authors
·
Aug 23

Condor: A Code Discriminator Integrating General Semantics with Code Details

LLMs demonstrate significant potential across various software engineering tasks. However, they still face challenges in generating correct code on the first attempt when addressing complex requirements. Introducing a discriminator to select reliable outputs from multiple generated results is an effective way to enhance their reliability and stability. Currently, these discriminators fall into two categories: execution-based discriminators and non-execution-based discriminators. Execution-based discriminators face flexibility challenges due to difficulties in obtaining test cases and security concerns, while non-execution-based discriminators, although more flexible, struggle to capture subtle differences in code details. To maintain flexibility while improving the model's ability to capture fine-grained code details, this paper proposes Condor. We first design contrastive learning to optimize the code representations of the base model, enabling it to reflect differences in code details. Then, we leverage intermediate data from the code modification process to further enrich the discriminator's training data, enhancing its ability to discern code details. Experimental results indicate that on the subtle code difference dataset (i.e., CodeNanoFix), Condor significantly outperforms other discriminators in discriminative performance: Condor (1.3B) improves the discriminative F1 score of DeepSeek-Coder (1.3B) from 67% to 73%. In discriminating LLM-generated outputs, Condor (1.3B) and Condor (110M) raise the Pass@1 score of Meta-Llama-3.1-Instruct (70B) on the CodeNanoFix dataset from 52.64% to 62.63% and 59.64%, respectively. Moreover, Condor demonstrates strong generalization capabilities on the MBPP and APPS datasets. For example, Condor (1.3B) improves the Pass@1 of Meta-Llama-3.1-Instruct (70B) on the APPS dataset by 147.05%.

  • 12 authors
·
Dec 23, 2024

HapticLLaMA: A Multimodal Sensory Language Model for Haptic Captioning

Haptic captioning is the task of generating natural language descriptions from haptic signals, such as vibrations, for use in virtual reality, accessibility, and rehabilitation applications. While previous multimodal research has focused primarily on vision and audio, haptic signals for the sense of touch remain underexplored. To address this gap, we formalize the haptic captioning task and propose HapticLLaMA, a multimodal sensory language model that interprets vibration signals into descriptions in a given sensory, emotional, or associative category. We investigate two types of haptic tokenizers, a frequency-based tokenizer and an EnCodec-based tokenizer, that convert haptic signals into sequences of discrete units, enabling their integration with the LLaMA model. HapticLLaMA is trained in two stages: (1) supervised fine-tuning using the LLaMA architecture with LoRA-based adaptation, and (2) fine-tuning via reinforcement learning from human feedback (RLHF). We assess HapticLLaMA's captioning performance using both automated n-gram metrics and human evaluation. HapticLLaMA demonstrates strong capability in interpreting haptic vibration signals, achieving a METEOR score of 59.98 and a BLEU-4 score of 32.06 respectively. Additionally, over 61% of the generated captions received human ratings above 3.5 on a 7-point scale, with RLHF yielding a 10% improvement in the overall rating distribution, indicating stronger alignment with human haptic perception. These findings highlight the potential of large language models to process and adapt to sensory data.

  • 3 authors
·
Aug 8

Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning

The tension between data privacy and model utility has become the defining bottleneck for the practical deployment of large language models (LLMs) trained on sensitive corpora including healthcare. Differentially private stochastic gradient descent (DP-SGD) guarantees formal privacy, yet it does so at a pronounced cost: gradients are forcibly clipped and perturbed with noise, degrading sample efficiency and final accuracy. Numerous variants have been proposed to soften this trade-off, but they all share a handicap: their control knobs are hard-coded, global, and oblivious to the evolving optimization landscape. Consequently, practitioners are forced either to over-spend privacy budget in pursuit of utility, or to accept mediocre models in order to stay within privacy constraints. We present RLDP, the first framework to cast DP optimization itself as a closed-loop control problem amenable to modern deep reinforcement learning (RL). RLDP continuously senses rich statistics of the learning dynamics and acts by selecting fine-grained per parameter gradient-clipping thresholds as well as the magnitude of injected Gaussian noise. A soft actor-critic (SAC) hyper-policy is trained online during language model fine-tuning; it learns, from scratch, how to allocate the privacy budget where it matters and when it matters. Across more than 1,600 ablation experiments on GPT2-small, Llama-1B, Llama-3B, and Mistral-7B, RLDP delivers perplexity reductions of 1.3-30.5% (mean 5.4%) and an average 5.6% downstream utility gain. RLDP reaches each baseline's final utility after only 13-43% of the gradient-update budget (mean speed-up 71%), all while honoring the same (epsilon, delta)-DP contract and exhibiting equal or lower susceptibility to membership-inference and canary-extraction attacks.

  • 5 authors
·
Jul 30 2

KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization

LLMs are seeing growing use for applications such as document analysis and summarization which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference. Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in ultra-low precisions, such as sub-4-bit. In this work, we present KVQuant, which addresses this problem by incorporating novel methods for quantizing cached KV activations, including: (i) Per-Channel Key Quantization, where we adjust the dimension along which we quantize the Key activations to better match the distribution; (ii) Pre-RoPE Key Quantization, where we quantize Key activations before the rotary positional embedding to mitigate its impact on quantization; (iii) Non-Uniform KV Cache Quantization, where we derive per-layer sensitivity-weighted non-uniform datatypes that better represent the distributions; (iv) Per-Vector Dense-and-Sparse Quantization, where we isolate outliers separately for each vector to minimize skews in quantization ranges; and (v) Q-Norm, where we normalize quantization centroids in order to mitigate distribution shift, providing additional benefits for 2-bit quantization. By applying our method to the LLaMA, LLaMA-2, and Mistral models, we achieve <0.1 perplexity degradation with 3-bit quantization on both Wikitext-2 and C4, outperforming existing approaches. Our method enables serving the LLaMA-7B model with a context length of up to 1 million on a single A100-80GB GPU and up to 10 million on an 8-GPU system.

  • 7 authors
·
Jan 31, 2024 2

Improving Context-Aware Preference Modeling for Language Models

While finetuning language models from pairwise preferences has proven remarkably effective, the underspecified nature of natural language presents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute context-conditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.

  • 4 authors
·
Jul 20, 2024

LLM-Guided Probabilistic Fusion for Label-Efficient Document Layout Analysis

Document layout understanding remains data-intensive despite advances in semi-supervised learning. We present a framework that enhances semi-supervised detection by fusing visual predictions with structural priors from text-pretrained LLMs via principled probabilistic weighting. Given unlabeled documents, an OCR-LLM pipeline infers hierarchical regions which are combined with teacher detector outputs through inverse-variance fusion to generate refined pseudo-labels.Our method demonstrates consistent gains across model scales. With a lightweight SwiftFormer backbone (26M params), we achieve 88.2pm0.3 AP using only 5\% labels on PubLayNet. When applied to document-pretrained LayoutLMv3 (133M params), our fusion framework reaches 89.7pm0.4 AP, surpassing both LayoutLMv3 with standard semi-supervised learning (89.1pm0.4 AP, p=0.02) and matching UDOP~udop (89.8 AP) which requires 100M+ pages of multimodal pretraining. This demonstrates that LLM structural priors are complementary to both lightweight and pretrained architectures. Key findings include: (1) learned instance-adaptive gating improves over fixed weights by +0.9 AP with data-dependent PAC bounds correctly predicting convergence; (2) open-source LLMs enable privacy-preserving deployment with minimal loss (Llama-3-70B: 87.1 AP lightweight, 89.4 AP with LayoutLMv3); (3) LLMs provide targeted semantic disambiguation (18.7\% of cases, +3.8 AP gain) beyond simple text heuristics.Total system cost includes \$12 for GPT-4o-mini API or 17 GPU-hours for local Llama-3-70B per 50K pages, amortized across training runs.

  • 3 authors
·
Nov 11

Preserving Privacy, Increasing Accessibility, and Reducing Cost: An On-Device Artificial Intelligence Model for Medical Transcription and Note Generation

Background: Clinical documentation represents a significant burden for healthcare providers, with physicians spending up to 2 hours daily on administrative tasks. Recent advances in large language models (LLMs) offer promising solutions, but privacy concerns and computational requirements limit their adoption in healthcare settings. Objective: To develop and evaluate a privacy-preserving, on-device medical transcription system using a fine-tuned Llama 3.2 1B model capable of generating structured medical notes from medical transcriptions while maintaining complete data sovereignty entirely in the browser. Methods: We fine-tuned a Llama 3.2 1B model using Parameter-Efficient Fine-Tuning (PEFT) with LoRA on 1,500 synthetic medical transcription-to-structured note pairs. The model was evaluated against the base Llama 3.2 1B on two datasets: 100 endocrinology transcripts and 140 modified ACI benchmark cases. Evaluation employed both statistical metrics (ROUGE, BERTScore, BLEURT) and LLM-as-judge assessments across multiple clinical quality dimensions. Results: The fine-tuned OnDevice model demonstrated substantial improvements over the base model. On the ACI benchmark, ROUGE-1 scores increased from 0.346 to 0.496, while BERTScore F1 improved from 0.832 to 0.866. Clinical quality assessments showed marked reduction in major hallucinations (from 85 to 35 cases) and enhanced factual correctness (2.81 to 3.54 on 5-point scale). Similar improvements were observed on the internal evaluation dataset, with composite scores increasing from 3.13 to 4.43 (+41.5%). Conclusions: Fine-tuning compact LLMs for medical transcription yields clinically meaningful improvements while enabling complete on-device browser deployment. This approach addresses key barriers to AI adoption in healthcare: privacy preservation, cost reduction, and accessibility for resource-constrained environments.

  • 6 authors
·
Jul 2 1

Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training

Small language models (SLMs) have attracted considerable attention from both academia and industry due to their broad range of applications in edge devices. To obtain SLMs with strong performance, conventional approaches either pre-train the models from scratch, which incurs substantial computational costs, or compress/prune existing large language models (LLMs), which results in performance drops and falls short in comparison to pre-training. In this paper, we investigate the family of acceleration methods that involve both structured pruning and model training. We found 1) layer-wise adaptive pruning (Adapt-Pruner) is extremely effective in LLMs and yields significant improvements over existing pruning techniques, 2) adaptive pruning equipped with further training leads to models comparable to those pre-training from scratch, 3) incremental pruning brings non-trivial performance gain by interleaving pruning with training and only removing a small portion of neurons (sim5%) at a time. Experimental results on LLaMA-3.1-8B demonstrate that Adapt-Pruner outperforms conventional pruning methods, such as LLM-Pruner, FLAP, and SliceGPT, by an average of 1%-7% in accuracy on commonsense benchmarks. Additionally, Adapt-Pruner restores the performance of MobileLLM-125M to 600M on the MMLU benchmark with 200times fewer tokens via pruning from its larger counterparts, and discovers a new 1B model that surpasses LLaMA-3.2-1B in multiple benchmarks.

  • 7 authors
·
Feb 5

Chain-of-Thought Hub: A Continuous Effort to Measure Large Language Models' Reasoning Performance

As large language models (LLMs) are continuously being developed, their evaluation becomes increasingly important yet challenging. This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models. We are interested in this setting for two reasons: (1) from the behavior of GPT and PaLM model family, we observe that complex reasoning is likely to be a key differentiator between weaker and stronger LLMs; (2) we envisage large language models to become the next-generation computational platform and foster an ecosystem of LLM-based new applications, this naturally requires the foundation models to perform complex tasks that often involve the composition of linguistic and logical operations. Our approach is to compile a suite of challenging reasoning benchmarks to track the progress of LLMs. Our current results show that: (1) model scale clearly correlates with reasoning capabilities; (2) As of May 2023, Claude-v1.3 and PaLM-2 are the only two models that are comparable with GPT-4, while open-sourced models still lag behind; (3) LLaMA-65B performs closely to code-davinci-002, indicating that with successful further development such as reinforcement learning from human feedback (RLHF), it has great potential to be close to GPT-3.5-Turbo. Our results also suggest that for the open-source efforts to catch up, the community may focus more on building better base models and exploring RLHF.

  • 6 authors
·
May 26, 2023

QLoRA: Efficient Finetuning of Quantized LLMs

We present QLoRA, an efficient finetuning approach that reduces memory usage enough to finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit finetuning task performance. QLoRA backpropagates gradients through a frozen, 4-bit quantized pretrained language model into Low Rank Adapters~(LoRA). Our best model family, which we name Guanaco, outperforms all previous openly released models on the Vicuna benchmark, reaching 99.3% of the performance level of ChatGPT while only requiring 24 hours of finetuning on a single GPU. QLoRA introduces a number of innovations to save memory without sacrificing performance: (a) 4-bit NormalFloat (NF4), a new data type that is information theoretically optimal for normally distributed weights (b) double quantization to reduce the average memory footprint by quantizing the quantization constants, and (c) paged optimziers to manage memory spikes. We use QLoRA to finetune more than 1,000 models, providing a detailed analysis of instruction following and chatbot performance across 8 instruction datasets, multiple model types (LLaMA, T5), and model scales that would be infeasible to run with regular finetuning (e.g. 33B and 65B parameter models). Our results show that QLoRA finetuning on a small high-quality dataset leads to state-of-the-art results, even when using smaller models than the previous SoTA. We provide a detailed analysis of chatbot performance based on both human and GPT-4 evaluations showing that GPT-4 evaluations are a cheap and reasonable alternative to human evaluation. Furthermore, we find that current chatbot benchmarks are not trustworthy to accurately evaluate the performance levels of chatbots. A lemon-picked analysis demonstrates where Guanaco fails compared to ChatGPT. We release all of our models and code, including CUDA kernels for 4-bit training.

  • 4 authors
·
May 23, 2023 10

Soft Tokens, Hard Truths

The use of continuous instead of discrete tokens during the Chain-of-Thought (CoT) phase of reasoning LLMs has garnered attention recently, based on the intuition that a continuous mixture of discrete tokens could simulate a superposition of several reasoning paths simultaneously. Theoretical results have formally proven that continuous tokens have much greater expressivity and can solve specific problems more efficiently. However, practical use of continuous tokens has been limited by strong training difficulties: previous works either just use continuous tokens at inference time on a pre-trained discrete-token model, or must distill the continuous CoT from ground-truth discrete CoTs and face computational costs that limit the CoT to very few tokens. This is the first work introducing a scalable method to learn continuous CoTs via reinforcement learning (RL), without distilling from reference discrete CoTs. We use "soft" tokens: mixtures of tokens together with noise on the input embedding to provide RL exploration. Computational overhead is minimal, enabling us to learn continuous CoTs with hundreds of tokens. On math reasoning benchmarks with Llama and Qwen models up to 8B, training with continuous CoTs match discrete-token CoTs for pass@1 and surpass them for pass@32, showing greater CoT diversity. In systematic comparisons, the best-performing scenario is to train with continuous CoT tokens then use discrete tokens for inference, meaning the "soft" models can be deployed in a standard way. Finally, we show continuous CoT RL training better preserves the predictions of the base model on out-of-domain tasks, thus providing a softer touch to the base model.

  • 5 authors
·
Sep 23 2

Shrinking the Generation-Verification Gap with Weak Verifiers

Verifiers can improve language model capabilities by scoring and ranking responses from generated candidates. Currently, high-quality verifiers are either unscalable (e.g., humans) or limited in utility (e.g., tools like Lean). While LM judges and reward models have become broadly useful as general-purpose verifiers, a significant performance gap remains between them and oracle verifiers (verifiers with perfect accuracy). To help close this gap, we introduce Weaver, a framework for designing a strong verifier by combining multiple weak, imperfect verifiers. We find weighted ensembles of verifiers, which typically require learning from labeled data, significantly outperform unweighted combinations due to differences in verifier accuracies. To reduce dependency on labeled data, Weaver leverages weak supervision to estimate each verifier's accuracy and combines outputs into a unified score that better reflects true response quality. However, directly applying weak supervision algorithms poses challenges, including inconsistent verifier output formats and handling low-quality verifiers. Weaver addresses these using dataset statistics to normalize outputs and filter specific verifiers. We study Weaver's effectiveness in test-time repeated sampling, where a model generates multiple candidate responses and selects one. Our evaluations show Weaver significantly improves over Pass@1-performance when selecting the first candidate-across reasoning and math tasks, achieving o3-mini-level accuracy with Llama 3.3 70B Instruct as generator, and an ensemble of 70B or smaller judge and reward models as verifiers (87.7% average). This gain mirrors the jump between GPT-4o and o3-mini (69.0% vs. 86.7%), which required extensive finetuning and post-training. To reduce computational costs of verifier ensembles, we train a 400M cross-encoder using Weaver's combined output scores.

  • 12 authors
·
Jun 22

OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models

Large language models (LLMs) have revolutionized natural language processing tasks. However, their practical deployment is hindered by their immense memory and computation requirements. Although recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM, they hand-craft quantization parameters, which leads to low performance and fails to deal with extremely low-bit quantization. To tackle this issue, we introduce an Omnidirectionally calibrated Quantization (OmniQuant) technique for LLMs, which achieves good performance in diverse quantization settings while maintaining the computational efficiency of PTQ by efficiently optimizing various quantization parameters. OmniQuant comprises two innovative components including Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET). LWC modulates the extreme values of weights by optimizing the clipping threshold. Meanwhile, LET tackles activation outliers by shifting the challenge of quantization from activations to weights through a learnable equivalent transformation. Operating within a differentiable framework using block-wise error minimization, OmniQuant can optimize the quantization process efficiently for both weight-only and weight-activation quantization. For instance, the LLaMA-2 model family with the size of 7-70B can be processed with OmniQuant on a single A100-40G GPU within 1-16 hours using 128 samples. Extensive experiments validate OmniQuant's superior performance across diverse quantization configurations such as W4A4, W6A6, W4A16, W3A16, and W2A16. Additionally, OmniQuant demonstrates effectiveness in instruction-tuned models and delivers notable improvements in inference speed and memory reduction on real devices. Codes and models are available at https://github.com/OpenGVLab/OmniQuant.

  • 10 authors
·
Aug 24, 2023

Post-Training Sparse Attention with Double Sparsity

The inference process for large language models is slow and memory-intensive, with one of the most critical bottlenecks being excessive Key-Value (KV) cache accesses. This paper introduces "Double Sparsity," a novel post-training sparse attention technique designed to alleviate this bottleneck by reducing KV cache access. Double Sparsity combines token sparsity, which focuses on utilizing only the important tokens for computing self-attention, with channel sparsity, an approach that uses important feature channels for identifying important tokens. Our key insight is that the pattern of channel sparsity is relatively static, allowing us to use offline calibration to make it efficient at runtime, thereby enabling accurate and efficient identification of important tokens. Moreover, this method can be combined with offloading to achieve significant memory usage reduction. Experimental results demonstrate that Double Sparsity can achieve 1{16} token and channel sparsity with minimal impact on accuracy across various tasks, including wiki-2 perplexity, key-value retrieval, and long context benchmarks with models including Llama-2-7B, Llama-2-70B, and Mixtral-8x7B. It brings up to a 14.1times acceleration in attention operations and a 1.9times improvement in end-to-end inference on GPUs. With offloading, it achieves a decoding speed acceleration of 16.3times compared to state-of-the-art solutions at a sequence length of 256K. Our code is publicly available at https://github.com/andy-yang-1/DoubleSparse.

  • 5 authors
·
Aug 11, 2024 2

Text-ADBench: Text Anomaly Detection Benchmark based on LLMs Embedding

Text anomaly detection is a critical task in natural language processing (NLP), with applications spanning fraud detection, misinformation identification, spam detection and content moderation, etc. Despite significant advances in large language models (LLMs) and anomaly detection algorithms, the absence of standardized and comprehensive benchmarks for evaluating the existing anomaly detection methods on text data limits rigorous comparison and development of innovative approaches. This work performs a comprehensive empirical study and introduces a benchmark for text anomaly detection, leveraging embeddings from diverse pre-trained language models across a wide array of text datasets. Our work systematically evaluates the effectiveness of embedding-based text anomaly detection by incorporating (1) early language models (GloVe, BERT); (2) multiple LLMs (LLaMa-2, LLama-3, Mistral, OpenAI (small, ada, large)); (3) multi-domain text datasets (news, social media, scientific publications); (4) comprehensive evaluation metrics (AUROC, AUPRC). Our experiments reveal a critical empirical insight: embedding quality significantly governs anomaly detection efficacy, and deep learning-based approaches demonstrate no performance advantage over conventional shallow algorithms (e.g., KNN, Isolation Forest) when leveraging LLM-derived embeddings.In addition, we observe strongly low-rank characteristics in cross-model performance matrices, which enables an efficient strategy for rapid model evaluation (or embedding evaluation) and selection in practical applications. Furthermore, by open-sourcing our benchmark toolkit that includes all embeddings from different models and code at https://github.com/jicongfan/Text-Anomaly-Detection-Benchmark, this work provides a foundation for future research in robust and scalable text anomaly detection systems.

  • 2 authors
·
Jul 16

A2SF: Accumulative Attention Scoring with Forgetting Factor for Token Pruning in Transformer Decoder

Recently, large language models (LLM) based on transformers are facing memory bottleneck issues due to KV cache, especially in long sequence handling. Previous researches proposed KV cache compression techniques that identify insignificant tokens based on Accumulative Attention Scores and removes their items from KV cache, noting that only few tokens play an important role in attention operations. However, we have observed that the existing Accumulative Attention Score is not suitable for the transformer decoder structure. In the decoder model, the number of times the Attention Score accumulates varies depending on the order of token appearance due to the effect of masking, causing an uneven comparison between tokens. To solve this, we propose Accumulative Attention Score with Forgetting Factor (A2SF) technique, which introduces a Forgetting Factor in the Attention Score accumulation process. A2SF applies a penalty to the past Attention Score generated from old tokens by repeatedly multiplying the Forgetting Factor to the Attention Score over time. Therefore, older tokens receive a larger penalty, providing fairness among different ages of tokens. Through the fair comparison among tokens, we can more effectively select important tokens. We have verified the accuracy improvement through A2SF in the OPT and LLaMA models and A2SF improves the accuracy of LLaMA 2 by up to 7.8% and 5.1% on 1-shot and 0-shot.

  • 2 authors
·
Jul 29, 2024

FlatQuant: Flatness Matters for LLM Quantization

Recently, quantization has been widely used for the compression and acceleration of large language models~(LLMs). Due to the outliers in LLMs, it is crucial to flatten weights and activations to minimize quantization error with the equally spaced quantization points. Prior research explores various pre-quantization transformations to suppress outliers, such as per-channel scaling and Hadamard transformation. However, we observe that these transformed weights and activations can still remain steep and outspread. In this paper, we propose FlatQuant (Fast and Learnable Affine Transformation), a new post-training quantization approach to enhance flatness of weights and activations. Our approach identifies optimal affine transformations tailored to each linear layer, calibrated in hours via a lightweight objective. To reduce runtime overhead, we apply Kronecker decomposition to the transformation matrices, and fuse all operations in FlatQuant into a single kernel. Extensive experiments show that FlatQuant sets up a new state-of-the-art quantization benchmark. For instance, it achieves less than 1% accuracy drop for W4A4 quantization on the LLaMA-3-70B model, surpassing SpinQuant by 7.5%. For inference latency, FlatQuant reduces the slowdown induced by pre-quantization transformation from 0.26x of QuaRot to merely 0.07x, bringing up to 2.3x speedup for prefill and 1.7x speedup for decoding, respectively. Code is available at: https://github.com/ruikangliu/FlatQuant.

  • 13 authors
·
Oct 12, 2024 2

Bag of Tricks for Inference-time Computation of LLM Reasoning

With the advancement of large language models (LLMs), solving complex reasoning tasks has gained increasing attention. Inference-time computation methods (e.g., Best-of-N, beam search, et al.) are particularly valuable as they can enhance reasoning performance without modifying model parameters or requiring additional training. However, these techniques come with implementation challenges, and most existing methods remain at the proof-of-concept stage with limited practical adoption due to their computational complexity and varying effectiveness across different tasks. In this paper, we investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity. Since most current methods rely on a proposer-verifier pipeline that first generates candidate solutions (e.g., reasoning solutions) and then selects the best one based on reward signals (e.g., RLHF rewards, process rewards), our research focuses on optimizing both candidate solution generation (e.g., instructing prompts, hyperparameters such as temperature and top-p) and reward mechanisms (e.g., self-evaluation, reward types). Through extensive experiments (more than 20,000 A100-80G GPU hours with over 1,000 experiments) across a variety of models (e.g., Llama, Qwen, and Mistral families) of various sizes, our ablation studies reveal that previously overlooked strategies can significantly enhance performance (e.g., tuning temperature can improve reasoning task performance by up to 5%). Furthermore, we establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks. These findings provide a stronger foundation for future research. The code is available at https://github.com/usail-hkust/benchmark_inference_time_computation_LLM

  • 4 authors
·
Feb 10

Rewriting Pre-Training Data Boosts LLM Performance in Math and Code

The performance of large language models (LLMs) in program synthesis and mathematical reasoning is fundamentally limited by the quality of their pre-training corpora. We introduce two openly licensed datasets, released under the Llama 3.3 Community License, that significantly enhance LLM performance by systematically rewriting public data. SwallowCode (approximately 16.1 billion tokens) refines Python snippets from The-Stack-v2 through a novel four-stage pipeline: syntax validation, pylint-based style filtering, and a two-stage LLM rewriting process that enforces style conformity and transforms snippets into self-contained, algorithmically efficient examples. Unlike prior methods that rely on exclusionary filtering or limited transformations, our transform-and-retain approach upgrades low-quality code, maximizing data utility. SwallowMath (approximately 2.3 billion tokens) enhances Finemath-4+ by removing boilerplate, restoring context, and reformatting solutions into concise, step-by-step explanations. Within a fixed 50 billion token training budget, continual pre-training of Llama-3.1-8B with SwallowCode boosts pass@1 by +17.0 on HumanEval and +17.7 on HumanEval+ compared to Stack-Edu, surpassing the baseline model's code generation capabilities. Similarly, substituting SwallowMath yields +12.4 accuracy on GSM8K and +7.6 on MATH. Ablation studies confirm that each pipeline stage contributes incrementally, with rewriting delivering the largest gains. All datasets, prompts, and checkpoints are publicly available, enabling reproducible research and advancing LLM pre-training for specialized domains.

Does your data spark joy? Performance gains from domain upsampling at the end of training

Pretraining datasets for large language models (LLMs) have grown to trillions of tokens composed of large amounts of CommonCrawl (CC) web scrape along with smaller, domain-specific datasets. It is expensive to understand the impact of these domain-specific datasets on model capabilities as training at large FLOP scales is required to reveal significant changes to difficult and emergent benchmarks. Given the increasing cost of experimenting with pretraining data, how does one determine the optimal balance between the diversity in general web scrapes and the information density of domain specific data? In this work, we show how to leverage the smaller domain specific datasets by upsampling them relative to CC at the end of training to drive performance improvements on difficult benchmarks. This simple technique allows us to improve up to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)x2014a model trained for twice as long. We experiment with ablating the duration of domain upsampling from 5% to 30% of training and find that 10% to 20% percent is optimal for navigating the tradeoff between general language modeling capabilities and targeted benchmarks. We also use domain upsampling to characterize at scale the utility of individual datasets for improving various benchmarks by removing them during this final phase of training. This tool opens up the ability to experiment with the impact of different pretraining datasets at scale, but at an order of magnitude lower cost compared to full pretraining runs.

  • 5 authors
·
Jun 5, 2024

Compensating for Data with Reasoning: Low-Resource Machine Translation with LLMs

Large Language Models (LLMs) have demonstrated strong capabilities in multilingual machine translation, sometimes even outperforming traditional neural systems. However, previous research has highlighted the challenges of using LLMs, particularly with prompt engineering, for low-resource languages. In this work, we introduce Fragment-Shot Prompting, a novel in-context learning method that segments input and retrieves translation examples based on syntactic coverage, along with Pivoted Fragment-Shot, an extension that enables translation without direct parallel data. We evaluate these methods using GPT-3.5, GPT-4o, o1-mini, LLaMA-3.3, and DeepSeek-R1 for translation between Italian and two Ladin variants, revealing three key findings: (1) Fragment-Shot Prompting is effective for translating into and between the studied low-resource languages, with syntactic coverage positively correlating with translation quality; (2) Models with stronger reasoning abilities make more effective use of retrieved knowledge, generally produce better translations, and enable Pivoted Fragment-Shot to significantly improve translation quality between the Ladin variants; and (3) prompt engineering offers limited, if any, improvements when translating from a low-resource to a high-resource language, where zero-shot prompting already yields satisfactory results. We publicly release our code and the retrieval corpora.

  • 2 authors
·
May 28

MuMath-Code: Combining Tool-Use Large Language Models with Multi-perspective Data Augmentation for Mathematical Reasoning

The tool-use Large Language Models (LLMs) that integrate with external Python interpreters have significantly enhanced mathematical reasoning capabilities for open-source LLMs, while tool-free methods chose another track: augmenting math reasoning data. However, a great method to integrate the above two research paths and combine their advantages remains to be explored. In this work, we firstly include new math questions via multi-perspective data augmenting methods and then synthesize code-nested solutions to them. The open LLMs (i.e., Llama-2) are finetuned on the augmented dataset to get the resulting models, MuMath-Code (mu-Math-Code). During the inference phase, our MuMath-Code generates code and interacts with the external python interpreter to get the execution results. Therefore, MuMath-Code leverages the advantages of both the external tool and data augmentation. To fully leverage the advantages of our augmented data, we propose a two-stage training strategy: In Stage-1, we finetune Llama-2 on pure CoT data to get an intermediate model, which then is trained on the code-nested data in Stage-2 to get the resulting MuMath-Code. Our MuMath-Code-7B achieves 83.8 on GSM8K and 52.4 on MATH, while MuMath-Code-70B model achieves new state-of-the-art performance among open methods -- achieving 90.7% on GSM8K and 55.1% on MATH. Extensive experiments validate the combination of tool use and data augmentation, as well as our two-stage training strategy. We release the proposed dataset along with the associated code for public use.

  • 5 authors
·
May 13, 2024 2

Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs

Tokenization, the division of input text into input tokens, is an often overlooked aspect of the large language model (LLM) pipeline and could be the source of useful or harmful inductive biases. Historically, LLMs have relied on byte pair encoding, without care to specific input domains. With the increased use of LLMs for reasoning, various number-specific tokenization schemes have been adopted, with popular models like LLaMa and PaLM opting for single-digit tokenization while GPT-3.5 and GPT-4 have separate tokens for each 1-, 2-, and 3-digit numbers. In this work, we study the effect this choice has on numerical reasoning through the use of arithmetic tasks. We consider left-to-right and right-to-left tokenization for GPT-3.5 and -4, finding that right-to-left tokenization (enforced by comma separating numbers at inference time) leads to largely improved performance. Furthermore, we find that model errors when using standard left-to-right tokenization follow stereotyped error patterns, suggesting that model computations are systematic rather than approximate. We show that the model is able to convert between tokenizations easily, thus allowing chain-of-thought-inspired approaches to recover performance on left-to-right tokenized inputs. We also find the gap between tokenization directions decreases when models are scaled, possibly indicating that larger models are better able to override this tokenization-dependent inductive bias. In summary, our work performs the first study of how number tokenization choices lead to differences in model performance on arithmetic tasks, accompanied by a thorough analysis of error patterns. We hope this work inspires practitioners to more carefully ablate number tokenization-related choices when working towards general models of numerical reasoning.

  • 2 authors
·
Feb 22, 2024 1

Arctic-SnowCoder: Demystifying High-Quality Data in Code Pretraining

Recent studies have been increasingly demonstrating that high-quality data is crucial for effective pretraining of language models. However, the precise definition of "high-quality" remains underexplored. Focusing on the code domain, we introduce Arctic-SnowCoder-1.3B, a data-efficient base code model pretrained on 555B tokens through three phases of progressively refined data: (1) general pretraining with 500B standard-quality code tokens, preprocessed through basic filtering, deduplication, and decontamination, (2) continued pretraining with 50B high-quality tokens, selected from phase one by a BERT-style quality annotator trained to distinguish good code from random data, using positive examples drawn from high-quality code files, along with instruction data from Magicoder and StarCoder2-Instruct, and (3) enhanced pretraining with 5B synthetic data created by Llama-3.1-70B using phase two data as seeds, adapting the Magicoder approach for pretraining. Despite being trained on a limited dataset, Arctic-SnowCoder achieves state-of-the-art performance on BigCodeBench, a coding benchmark focusing on practical and challenging programming tasks, compared to similarly sized models trained on no more than 1T tokens, outperforming Phi-1.5-1.3B by 36%. Across all evaluated benchmarks, Arctic-SnowCoder-1.3B beats StarCoderBase-3B pretrained on 1T tokens. Additionally, it matches the performance of leading small base code models trained on trillions of tokens. For example, Arctic-SnowCoder-1.3B surpasses StarCoder2-3B, pretrained on over 3.3T tokens, on HumanEval+, a benchmark that evaluates function-level code generation, and remains competitive on BigCodeBench. Our evaluation presents a comprehensive analysis justifying various design choices for Arctic-SnowCoder. Most importantly, we find that the key to high-quality data is its alignment with the distribution of downstream applications.

  • 3 authors
·
Sep 3, 2024 2

Evaluating Cognitive Maps and Planning in Large Language Models with CogEval

Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.

  • 8 authors
·
Sep 24, 2023 1

SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression

Recent advances in large language model (LLM) pretraining have led to high-quality LLMs with impressive abilities. By compressing such LLMs via quantization to 3-4 bits per parameter, they can fit into memory-limited devices such as laptops and mobile phones, enabling personalized use. However, quantization down to 3-4 bits per parameter usually leads to moderate-to-high accuracy losses, especially for smaller models in the 1-10B parameter range, which are well-suited for edge deployments. To address this accuracy issue, we introduce the Sparse-Quantized Representation (SpQR), a new compressed format and quantization technique which enables for the first time near-lossless compression of LLMs across model scales, while reaching similar compression levels to previous methods. SpQR works by identifying and isolating outlier weights, which cause particularly-large quantization errors, and storing them in higher precision, while compressing all other weights to 3-4 bits, and achieves relative accuracy losses of less than 1% in perplexity for highly-accurate LLaMA and Falcon LLMs. This makes it possible to run 33B parameter LLM on a single 24 GB consumer GPU without any performance degradation at 15% speedup thus making powerful LLMs available to consumer without any downsides. SpQR comes with efficient algorithms for both encoding weights into its format, as well as decoding them efficiently at runtime. Specifically, we provide an efficient GPU inference algorithm for SpQR which yields faster inference than 16-bit baselines at similar accuracy, while enabling memory compression gains of more than 4x.

  • 9 authors
·
Jun 5, 2023

How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study

Meta's LLaMA family has become one of the most powerful open-source Large Language Model (LLM) series. Notably, LLaMA3 models have recently been released and achieve impressive performance across various with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-limited scenarios, we explore LLaMA3's capabilities when quantized to low bit-width. This exploration holds the potential to unveil new insights and challenges for low-bit quantization of LLaMA3 and other forthcoming LLMs, especially in addressing performance degradation problems that suffer in LLM compression. Specifically, we evaluate the 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets to comprehensively reveal LLaMA3's low-bit quantization performance. Our experiment results indicate that LLaMA3 still suffers non-negligent degradation in these scenarios, especially in ultra-low bit-width. This highlights the significant performance gap under low bit-width that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, pushing the LLMs to lower bit-width with higher accuracy for being practical. Our project is released on https://github.com/Macaronlin/LLaMA3-Quantization and quantized LLaMA3 models are released in https://huggingface.co/LLMQ.

  • 10 authors
·
Apr 22, 2024 12

LLaVA-UHD: an LMM Perceiving Any Aspect Ratio and High-Resolution Images

Visual encoding constitutes the basis of large multimodal models (LMMs) in understanding the visual world. Conventional LMMs process images in fixed sizes and limited resolutions, while recent explorations in this direction are limited in adaptivity, efficiency, and even correctness. In this work, we first take GPT-4V and LLaVA-1.5 as representative examples and expose systematic flaws rooted in their visual encoding strategy. To address the challenges, we present LLaVA-UHD, a large multimodal model that can efficiently perceive images in any aspect ratio and high resolution. LLaVA-UHD includes three key components: (1) An image modularization strategy that divides native-resolution images into smaller variable-sized slices for efficient and extensible encoding, (2) a compression module that further condenses image tokens from visual encoders, and (3) a spatial schema to organize slice tokens for LLMs. Comprehensive experiments show that LLaVA-UHD outperforms established LMMs trained with 2-3 orders of magnitude more data on 9 benchmarks. Notably, our model built on LLaVA-1.5 336x336 supports 6 times larger (i.e., 672x1088) resolution images using only 94% inference computation, and achieves 6.4 accuracy improvement on TextVQA. Moreover, the model can be efficiently trained in academic settings, within 23 hours on 8 A100 GPUs (vs. 26 hours of LLaVA-1.5). We make the data and code publicly available at https://github.com/thunlp/LLaVA-UHD.

  • 10 authors
·
Mar 18, 2024 1

LLaVA-SP: Enhancing Visual Representation with Visual Spatial Tokens for MLLMs

The architecture of multimodal large language models (MLLMs) commonly connects a vision encoder, often based on CLIP-ViT, to a large language model. While CLIP-ViT works well for capturing global image features, it struggles to model local relationships between adjacent patches, leading to weaker visual representation, which in turn affects the detailed understanding ability of MLLMs. To solve this, we propose LLaVA-SP, which only adds six spatial visual tokens to the original visual tokens to enhance the visual representation. Our approach offers three key advantages: 1)We propose a novel Projector, which uses convolutional kernels to derive visual spatial tokens from ViT patch features, simulating two visual spatial ordering approaches: ``from central region to global" and ``from abstract to specific". Then, a cross-attention mechanism is applied to fuse fine-grained visual information, enriching the overall visual representation. 2) We present two model variants: LLaVA-SP-Cropping, which focuses on detail features through progressive cropping, and LLaVA-SP-Pooling, which captures global semantics through adaptive pooling, enabling the model to handle diverse visual understanding tasks. 3) Extensive experiments show that LLaVA-SP, fine-tuned with LoRA, achieves significant performance improvements across various multimodal benchmarks, outperforming the state-of-the-art LLaVA-1.5 model in multiple tasks with nearly identical inference latency. The code and models are available at https://github.com/CnFaker/LLaVA-SP.

  • 5 authors
·
Jul 1

PA-LLaVA: A Large Language-Vision Assistant for Human Pathology Image Understanding

The previous advancements in pathology image understanding primarily involved developing models tailored to specific tasks. Recent studies has demonstrated that the large vision-language model can enhance the performance of various downstream tasks in medical image understanding. In this study, we developed a domain-specific large language-vision assistant (PA-LLaVA) for pathology image understanding. Specifically, (1) we first construct a human pathology image-text dataset by cleaning the public medical image-text data for domain-specific alignment; (2) Using the proposed image-text data, we first train a pathology language-image pretraining (PLIP) model as the specialized visual encoder for pathology image, and then we developed scale-invariant connector to avoid the information loss caused by image scaling; (3) We adopt two-stage learning to train PA-LLaVA, first stage for domain alignment, and second stage for end to end visual question \& answering (VQA) task. In experiments, we evaluate our PA-LLaVA on both supervised and zero-shot VQA datasets, our model achieved the best overall performance among multimodal models of similar scale. The ablation experiments also confirmed the effectiveness of our design. We posit that our PA-LLaVA model and the datasets presented in this work can promote research in field of computational pathology. All codes are available at: https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA}{https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA

  • 7 authors
·
Aug 18, 2024

LLaSA: Large Language and E-Commerce Shopping Assistant

The e-commerce platform has evolved rapidly due to its widespread popularity and convenience. Developing an e-commerce shopping assistant for customers is crucial to aiding them in quickly finding desired products and recommending precisely what they need. However, most previous shopping assistants face two main problems: (1) task-specificity, which necessitates the development of different models for various tasks, thereby increasing development costs and limiting effectiveness; and (2) poor generalization, where the trained model performs inadequately on up-to-date products. To resolve these issues, we employ Large Language Models (LLMs) to construct an omnipotent assistant, leveraging their adeptness at handling multiple tasks and their superior generalization capability. Nonetheless, LLMs lack inherent knowledge of e-commerce concepts. To address this, we create an instruction dataset comprising 65,000 samples and diverse tasks, termed as EshopInstruct. Through instruction tuning on our dataset, the assistant, named LLaSA, demonstrates the potential to function as an omnipotent assistant. Additionally, we propose various inference optimization strategies to enhance performance with limited inference resources. In the Amazon KDD Cup 2024 Challenge, our proposed method, LLaSA, achieved an overall ranking of 3rd place on ShopBench, including 57 tasks and approximately 20,000 questions, and we secured top-5 rankings in each track, especially in track4, where we achieved the best performance result among all student teams. Our extensive practices fully demonstrate that LLMs possess the great potential to be competent e-commerce shopping assistants.

  • 7 authors
·
Aug 4, 2024

LLaVA-KD: A Framework of Distilling Multimodal Large Language Models

The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/caiyuxuan1120/LLaVA-KD.

  • 8 authors
·
Oct 21, 2024

LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token

The advent of real-time large multimodal models (LMMs) like GPT-4o has sparked considerable interest in efficient LMMs. LMM frameworks typically encode visual inputs into vision tokens (continuous representations) and integrate them and textual instructions into the context of large language models (LLMs), where large-scale parameters and numerous context tokens (predominantly vision tokens) result in substantial computational overhead. Previous efforts towards efficient LMMs always focus on replacing the LLM backbone with smaller models, while neglecting the crucial issue of token quantity. In this paper, we introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. To achieve a high compression ratio of vision tokens while preserving visual information, we first analyze how LMMs understand vision tokens and find that most vision tokens only play a crucial role in the early layers of LLM backbone, where they mainly fuse visual information into text tokens. Building on this finding, LLaVA-Mini introduces modality pre-fusion to fuse visual information into text tokens in advance, thereby facilitating the extreme compression of vision tokens fed to LLM backbone into one token. LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Experiments across 11 image-based and 7 video-based benchmarks demonstrate that LLaVA-Mini outperforms LLaVA-v1.5 with just 1 vision token instead of 576. Efficiency analyses reveal that LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.

  • 4 authors
·
Jan 7 4

LLaVA-MoLE: Sparse Mixture of LoRA Experts for Mitigating Data Conflicts in Instruction Finetuning MLLMs

Instruction finetuning on a variety of image-text instruction data is the key to obtaining a versatile Multimodal Large Language Model (MLLM), and different configurations of the instruction data can lead to finetuned models with different capabilities. However, we have discovered that data conflicts are inevitable when mixing instruction data from distinct domains, which can result in performance drops for tasks of a specific domain. To address this issue, we propose to apply an efficient Mixture of Experts (MoE) design, which is a sparse Mixture of LoRA Experts (MoLE) for instruction finetuning MLLMs. Within the Transformer layers, we extend the popular Low-Rank Adaption (LoRA) method by creating a set of LoRA experts specifically for the MLP layer, and route each token to the top-1 expert based on a routing function, allowing adaptive choices for tokens from different domains. Since the LoRA experts are sparsely activated, the training and inference cost are kept roughly constant compared to the original LoRA method. By replacing the plain-LoRA of LLaVA-1.5 with our MoE design, our final model is named LLaVA-MoLE. Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets with various configurations, and achieves consistent performance gains over the strong plain-LoRA baselines. Most importantly, on the mixed datasets, LLaVA-MoLE can even outperform the plain-LoRA baseline trained with twice the samples.

  • 3 authors
·
Jan 29, 2024

CXR-LLaVA: Multimodal Large Language Model for Interpreting Chest X-ray Images

Purpose: Recent advancements in large language models (LLMs) have expanded their capabilities in a multimodal fashion, potentially replicating the image interpretation of human radiologists. This study aimed to develop open-source multimodal large language model for interpreting chest X-ray images (CXR-LLaVA). We also examined the effect of prompt engineering and model parameters such as temperature and nucleus sampling. Materials and Methods: For training, we collected 659,287 publicly available CXRs: 417,336 CXRs had labels for certain radiographic abnormalities (dataset 1); 241,951 CXRs provided free-text radiology reports (dataset 2). After pre-training the Resnet50 as an image encoder, the contrastive language-image pre-training was used to align CXRs and corresponding radiographic abnormalities. Then, the Large Language Model Meta AI-2 was fine-tuned using dataset 2, which were refined using GPT-4, with generating various question answering scenarios. The code can be found at https://github.com/ECOFRI/CXR_LLaVA. Results: In the test set, we observed that the model's performance fluctuated based on its parameters. On average, it achieved F1 score of 0.34 for five pathologic findings (atelectasis, cardiomegaly, consolidation, edema, and pleural effusion), which was improved to 0.46 through prompt engineering. In the independent set, the model achieved an average F1 score of 0.30 for the same pathologic findings. Notably, for the pediatric chest radiograph dataset, which was unseen during training, the model differentiated abnormal radiographs with an F1 score ranging from 0.84 to 0.85. Conclusion: CXR-LLaVA demonstrates promising potential in CXR interpretation. Both prompt engineering and model parameter adjustments can play pivotal roles in interpreting CXRs.

  • 4 authors
·
Oct 22, 2023