18 PaddleOCR 3.0 Technical Report This technical report introduces PaddleOCR 3.0, an Apache-licensed open-source toolkit for OCR and document parsing. To address the growing demand for document understanding in the era of large language models, PaddleOCR 3.0 presents three major solutions: (1) PP-OCRv5 for multilingual text recognition, (2) PP-StructureV3 for hierarchical document parsing, and (3) PP-ChatOCRv4 for key information extraction. Compared to mainstream vision-language models (VLMs), these models with fewer than 100 million parameters achieve competitive accuracy and efficiency, rivaling billion-parameter VLMs. In addition to offering a high-quality OCR model library, PaddleOCR 3.0 provides efficient tools for training, inference, and deployment, supports heterogeneous hardware acceleration, and enables developers to easily build intelligent document applications. 19 authors · Jul 7 1
- PdfTable: A Unified Toolkit for Deep Learning-Based Table Extraction Currently, a substantial volume of document data exists in an unstructured format, encompassing Portable Document Format (PDF) files and images. Extracting information from these documents presents formidable challenges due to diverse table styles, complex forms, and the inclusion of different languages. Several open-source toolkits, such as Camelot, Plumb a PDF (pdfnumber), and Paddle Paddle Structure V2 (PP-StructureV2), have been developed to facilitate table extraction from PDFs or images. However, each toolkit has its limitations. Camelot and pdfnumber can solely extract tables from digital PDFs and cannot handle image-based PDFs and pictures. On the other hand, PP-StructureV2 can comprehensively extract image-based PDFs and tables from pictures. Nevertheless, it lacks the ability to differentiate between diverse application scenarios, such as wired tables and wireless tables, digital PDFs, and image-based PDFs. To address these issues, we have introduced the PDF table extraction (PdfTable) toolkit. This toolkit integrates numerous open-source models, including seven table recognition models, four Optical character recognition (OCR) recognition tools, and three layout analysis models. By refining the PDF table extraction process, PdfTable achieves adaptability across various application scenarios. We substantiate the efficacy of the PdfTable toolkit through verification on a self-labeled wired table dataset and the open-source wireless Publicly Table Reconition Dataset (PubTabNet). The PdfTable code will available on Github: https://github.com/CycloneBoy/pdf_table. 2 authors · Sep 8, 2024
- PP-LCNet: A Lightweight CPU Convolutional Neural Network We propose a lightweight CPU network based on the MKLDNN acceleration strategy, named PP-LCNet, which improves the performance of lightweight models on multiple tasks. This paper lists technologies which can improve network accuracy while the latency is almost constant. With these improvements, the accuracy of PP-LCNet can greatly surpass the previous network structure with the same inference time for classification. As shown in Figure 1, it outperforms the most state-of-the-art models. And for downstream tasks of computer vision, it also performs very well, such as object detection, semantic segmentation, etc. All our experiments are implemented based on PaddlePaddle. Code and pretrained models are available at PaddleClas. 13 authors · Sep 17, 2021