new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Adaptive Deep Learning for Efficient Visual Pose Estimation aboard Ultra-low-power Nano-drones

Sub-10cm diameter nano-drones are gaining momentum thanks to their applicability in scenarios prevented to bigger flying drones, such as in narrow environments and close to humans. However, their tiny form factor also brings their major drawback: ultra-constrained memory and processors for the onboard execution of their perception pipelines. Therefore, lightweight deep learning-based approaches are becoming increasingly popular, stressing how computational efficiency and energy-saving are paramount as they can make the difference between a fully working closed-loop system and a failing one. In this work, to maximize the exploitation of the ultra-limited resources aboard nano-drones, we present a novel adaptive deep learning-based mechanism for the efficient execution of a vision-based human pose estimation task. We leverage two State-of-the-Art (SoA) convolutional neural networks (CNNs) with different regression performance vs. computational costs trade-offs. By combining these CNNs with three novel adaptation strategies based on the output's temporal consistency and on auxiliary tasks to swap the CNN being executed proactively, we present six different systems. On a real-world dataset and the actual nano-drone hardware, our best-performing system, compared to executing only the bigger and most accurate SoA model, shows 28% latency reduction while keeping the same mean absolute error (MAE), 3% MAE reduction while being iso-latency, and the absolute peak performance, i.e., 6% better than SoA model.

  • 7 authors
·
Jan 26, 2024

Huge Ensembles Part I: Design of Ensemble Weather Forecasts using Spherical Fourier Neural Operators

Studying low-likelihood high-impact extreme weather events in a warming world is a significant and challenging task for current ensemble forecasting systems. While these systems presently use up to 100 members, larger ensembles could enrich the sampling of internal variability. They may capture the long tails associated with climate hazards better than traditional ensemble sizes. Due to computational constraints, it is infeasible to generate huge ensembles (comprised of 1,000-10,000 members) with traditional, physics-based numerical models. In this two-part paper, we replace traditional numerical simulations with machine learning (ML) to generate hindcasts of huge ensembles. In Part I, we construct an ensemble weather forecasting system based on Spherical Fourier Neural Operators (SFNO), and we discuss important design decisions for constructing such an ensemble. The ensemble represents model uncertainty through perturbed-parameter techniques, and it represents initial condition uncertainty through bred vectors, which sample the fastest growing modes of the forecast. Using the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) as a baseline, we develop an evaluation pipeline composed of mean, spectral, and extreme diagnostics. Using large-scale, distributed SFNOs with 1.1 billion learned parameters, we achieve calibrated probabilistic forecasts. As the trajectories of the individual members diverge, the ML ensemble mean spectra degrade with lead time, consistent with physical expectations. However, the individual ensemble members' spectra stay constant with lead time. Therefore, these members simulate realistic weather states, and the ML ensemble thus passes a crucial spectral test in the literature. The IFS and ML ensembles have similar Extreme Forecast Indices, and we show that the ML extreme weather forecasts are reliable and discriminating.

  • 16 authors
·
Aug 6, 2024

Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators

In Part I, we created an ensemble based on Spherical Fourier Neural Operators. As initial condition perturbations, we used bred vectors, and as model perturbations, we used multiple checkpoints trained independently from scratch. Based on diagnostics that assess the ensemble's physical fidelity, our ensemble has comparable performance to operational weather forecasting systems. However, it requires orders of magnitude fewer computational resources. Here in Part II, we generate a huge ensemble (HENS), with 7,424 members initialized each day of summer 2023. We enumerate the technical requirements for running huge ensembles at this scale. HENS precisely samples the tails of the forecast distribution and presents a detailed sampling of internal variability. HENS has two primary applications: (1) as a large dataset with which to study the statistics and drivers of extreme weather and (2) as a weather forecasting system. For extreme climate statistics, HENS samples events 4sigma away from the ensemble mean. At each grid cell, HENS increases the skill of the most accurate ensemble member and enhances coverage of possible future trajectories. As a weather forecasting model, HENS issues extreme weather forecasts with better uncertainty quantification. It also reduces the probability of outlier events, in which the verification value lies outside the ensemble forecast distribution.

  • 15 authors
·
Aug 2, 2024

Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images

Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays.

  • 274 authors
·
Mar 19, 2025

Euclid Quick Data Release (Q1) Exploring galaxy properties with a multi-modal foundation model

Modern astronomical surveys, such as the Euclid mission, produce high-dimensional, multi-modal data sets that include imaging and spectroscopic information for millions of galaxies. These data serve as an ideal benchmark for large, pre-trained multi-modal models, which can leverage vast amounts of unlabelled data. In this work, we present the first exploration of Euclid data with AstroPT, an autoregressive multi-modal foundation model trained on approximately 300 000 optical and infrared Euclid images and spectral energy distributions (SEDs) from the first Euclid Quick Data Release. We compare self-supervised pre-training with baseline fully supervised training across several tasks: galaxy morphology classification; redshift estimation; similarity searches; and outlier detection. Our results show that: (a) AstroPT embeddings are highly informative, correlating with morphology and effectively isolating outliers; (b) including infrared data helps to isolate stars, but degrades the identification of edge-on galaxies, which are better captured by optical images; (c) simple fine-tuning of these embeddings for photometric redshift and stellar mass estimation outperforms a fully supervised approach, even when using only 1% of the training labels; and (d) incorporating SED data into AstroPT via a straightforward multi-modal token-chaining method improves photo-z predictions, and allow us to identify potentially more interesting anomalies (such as ringed or interacting galaxies) compared to a model pre-trained solely on imaging data.

  • 324 authors
·
Mar 19, 2025

Euclid Quick Data Release (Q1): From images to multiwavelength catalogues: the Euclid MERge Processing Function

The Euclid satellite is an ESA mission that was launched in July 2023. \Euclid is working in its regular observing mode with the target of observing an area of 14,000~deg^2 with two instruments, the Visible Camera (VIS) and the Near IR Spectrometer and Photometer (NISP) down to I_{rm E} = 24.5~mag (10, sigma) in the Euclid Wide Survey. Ground-based imaging data in the ugriz bands complement the \Euclid data to enable photo-z determination and VIS PSF modeling for week lensing analysis. Euclid investigates the distance-redshift relation and the evolution of cosmic structures by measuring shapes and redshifts of galaxies and clusters of galaxies out to zsim 2. Generating the multi-wavelength catalogues from \Euclid and ground-based data is an essential part of the \Euclid data processing system. In the framework of the \Euclid Science Ground Segment (SGS), the aim of the MER Processing Function (PF) pipeline is to detect objects in the \Euclid imaging data, measure their properties, and MERge them into a single multi-wavelength catalogue. The MER PF pipeline performs source detection on both visible (VIS) and near-infrared (NIR) images and offers four different photometric measurements: Kron total flux, aperture photometry on PSF-matched images, template fitting photometry, and S\'ersic fitting photometry. Furthermore, the MER PF pipeline measures a set of ancillary quantities, spanning from morphology to quality flags, to better characterise all detected sources. In this paper, we show how the MER PF pipeline is designed, detailing its main steps, and we show that the pipeline products meet the tight requirements that Euclid aims to achieve on photometric accuracy. We also present the other measurements (e.g. morphology) that are included in the OU-MER output catalogues and we list all output products coming out of the MER PF pipeline.

  • 348 authors
·
Mar 19, 2025

Euclid. II. The VIS Instrument

This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.

  • 435 authors
·
May 22, 2024