Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNER- RoBERTa: Fine-Tuning RoBERTa for Named Entity Recognition (NER) within low-resource languages
Nowadays, Natural Language Processing (NLP) is an important tool for most people's daily life routines, ranging from understanding speech, translation, named entity recognition (NER), and text categorization, to generative text models such as ChatGPT. Due to the existence of big data and consequently large corpora for widely used languages like English, Spanish, Turkish, Persian, and many more, these applications have been developed accurately. However, the Kurdish language still requires more corpora and large datasets to be included in NLP applications. This is because Kurdish has a rich linguistic structure, varied dialects, and a limited dataset, which poses unique challenges for Kurdish NLP (KNLP) application development. While several studies have been conducted in KNLP for various applications, Kurdish NER (KNER) remains a challenge for many KNLP tasks, including text analysis and classification. In this work, we address this limitation by proposing a methodology for fine-tuning the pre-trained RoBERTa model for KNER. To this end, we first create a Kurdish corpus, followed by designing a modified model architecture and implementing the training procedures. To evaluate the trained model, a set of experiments is conducted to demonstrate the performance of the KNER model using different tokenization methods and trained models. The experimental results show that fine-tuned RoBERTa with the SentencePiece tokenization method substantially improves KNER performance, achieving a 12.8% improvement in F1-score compared to traditional models, and consequently establishes a new benchmark for KNLP.
Semantic Tokenizer for Enhanced Natural Language Processing
Traditionally, NLP performance improvement has been focused on improving models and increasing the number of model parameters. NLP vocabulary construction has remained focused on maximizing the number of words represented through subword regularization. We present a novel tokenizer that uses semantics to drive vocabulary construction. The tokenizer includes a trainer that uses stemming to enhance subword formation. Further optimizations and adaptations are implemented to minimize the number of words that cannot be encoded. The encoder is updated to integrate with the trainer. The tokenizer is implemented as a drop-in replacement for the SentencePiece tokenizer. The new tokenizer more than doubles the number of wordforms represented in the vocabulary. The enhanced vocabulary significantly improves NLP model convergence, and improves quality of word and sentence embeddings. Our experimental results show top performance on two Glue tasks using BERT-base, improving on models more than 50X in size.
DeBERTinha: A Multistep Approach to Adapt DebertaV3 XSmall for Brazilian Portuguese Natural Language Processing Task
This paper presents an approach for adapting the DebertaV3 XSmall model pre-trained in English for Brazilian Portuguese natural language processing (NLP) tasks. A key aspect of the methodology involves a multistep training process to ensure the model is effectively tuned for the Portuguese language. Initial datasets from Carolina and BrWac are preprocessed to address issues like emojis, HTML tags, and encodings. A Portuguese-specific vocabulary of 50,000 tokens is created using SentencePiece. Rather than training from scratch, the weights of the pre-trained English model are used to initialize most of the network, with random embeddings, recognizing the expensive cost of training from scratch. The model is fine-tuned using the replaced token detection task in the same format of DebertaV3 training. The adapted model, called DeBERTinha, demonstrates effectiveness on downstream tasks like named entity recognition, sentiment analysis, and determining sentence relatedness, outperforming BERTimbau-Large in two tasks despite having only 40M parameters.
Better Generalization with Semantic IDs: A Case Study in Ranking for Recommendations
Randomly-hashed item ids are used ubiquitously in recommendation models. However, the learned representations from random hashing prevents generalization across similar items, causing problems of learning unseen and long-tail items, especially when item corpus is large, power-law distributed, and evolving dynamically. In this paper, we propose using content-derived features as a replacement for random ids. We show that simply replacing ID features with content-based embeddings can cause a drop in quality due to reduced memorization capability. To strike a good balance of memorization and generalization, we propose to use Semantic IDs -- a compact discrete item representation learned from frozen content embeddings using RQ-VAE that captures the hierarchy of concepts in items -- as a replacement for random item ids. Similar to content embeddings, the compactness of Semantic IDs poses a problem of easy adaption in recommendation models. We propose novel methods for adapting Semantic IDs in industry-scale ranking models, through hashing sub-pieces of of the Semantic-ID sequences. In particular, we find that the SentencePiece model that is commonly used in LLM tokenization outperforms manually crafted pieces such as N-grams. To the end, we evaluate our approaches in a real-world ranking model for YouTube recommendations. Our experiments demonstrate that Semantic IDs can replace the direct use of video IDs by improving the generalization ability on new and long-tail item slices without sacrificing overall model quality.
BanglaByT5: Byte-Level Modelling for Bangla
Large language models (LLMs) have achieved remarkable success across various natural language processing tasks. However, most LLM models use traditional tokenizers like BPE and SentencePiece, which fail to capture the finer nuances of a morphologically rich language like Bangla (Bengali). In this work, we introduce BanglaByT5, the first byte-level encoder-decoder model explicitly tailored for Bangla. Built upon a small variant of Googles ByT5 architecture, BanglaByT5 is pre-trained on a 14GB curated corpus combining high-quality literary and newspaper articles. Through zeroshot and supervised evaluations across generative and classification tasks, BanglaByT5 demonstrates competitive performance, surpassing several multilingual and larger models. Our findings highlight the efficacy of byte-level modelling for morphologically rich languages and highlight BanglaByT5 potential as a lightweight yet powerful tool for Bangla NLP, particularly in both resource-constrained and scalable environments.
VNLP: Turkish NLP Package
In this work, we present VNLP: the first dedicated, complete, open-source, well-documented, lightweight, production-ready, state-of-the-art Natural Language Processing (NLP) package for the Turkish language. It contains a wide variety of tools, ranging from the simplest tasks, such as sentence splitting and text normalization, to the more advanced ones, such as text and token classification models. Its token classification models are based on "Context Model", a novel architecture that is both an encoder and an auto-regressive model. NLP tasks solved by VNLP models include but are not limited to Sentiment Analysis, Named Entity Recognition, Morphological Analysis \& Disambiguation and Part-of-Speech Tagging. Moreover, it comes with pre-trained word embeddings and corresponding SentencePiece Unigram tokenizers. VNLP has an open-source GitHub repository, ReadtheDocs documentation, PyPi package for convenient installation, Python and command-line API and a demo page to test all the functionality. Consequently, our main contribution is a complete, compact, easy-to-install and easy-to-use NLP package for Turkish.
WangchanBERTa: Pretraining transformer-based Thai Language Models
Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts.
PARAM-1 BharatGen 2.9B Model
Large Language Models (LLMs) have emerged as powerful general-purpose reasoning systems, yet their development remains dominated by English-centric data, architectures, and optimization paradigms. This exclusionary design results in structural under-representation of linguistically diverse regions such as India, where over 20 official languages and 100+ dialects coexist alongside phenomena like code-switching and diglossia. We introduce PARAM-1, a 2.9B parameter decoder-only, text-only language model trained from scratch with an explicit architectural and linguistic focus on Indian diversity. PARAM-1 is trained on a bilingual dataset consisting of only Hindi and English, constructed with a strong focus on fact-rich, high-quality content. It is guided by three core principles: equitable representation of Indic languages through a 25% corpus allocation; tokenization fairness via a SentencePiece tokenizer adapted to Indian morphological structures; and culturally aligned evaluation benchmarks across IndicQA, code-mixed reasoning, and socio-linguistic robustness tasks. By embedding diversity at the pretraining level-rather than deferring it to post-hoc alignment-PARAM-1 offers a design-first blueprint for equitable foundation modeling. Our results demonstrate that it serves as both a competent general-purpose model and a robust baseline for India-centric applications.
CompoundPiece: Evaluating and Improving Decompounding Performance of Language Models
While many languages possess processes of joining two or more words to create compound words, previous studies have been typically limited only to languages with excessively productive compound formation (e.g., German, Dutch) and there is no public dataset containing compound and non-compound words across a large number of languages. In this work, we systematically study decompounding, the task of splitting compound words into their constituents, at a wide scale. We first address the data gap by introducing a dataset of 255k compound and non-compound words across 56 diverse languages obtained from Wiktionary. We then use this dataset to evaluate an array of Large Language Models (LLMs) on the decompounding task. We find that LLMs perform poorly, especially on words which are tokenized unfavorably by subword tokenization. We thus introduce a novel methodology to train dedicated models for decompounding. The proposed two-stage procedure relies on a fully self-supervised objective in the first stage, while the second, supervised learning stage optionally fine-tunes the model on the annotated Wiktionary data. Our self-supervised models outperform the prior best unsupervised decompounding models by 13.9% accuracy on average. Our fine-tuned models outperform all prior (language-specific) decompounding tools. Furthermore, we use our models to leverage decompounding during the creation of a subword tokenizer, which we refer to as CompoundPiece. CompoundPiece tokenizes compound words more favorably on average, leading to improved performance on decompounding over an otherwise equivalent model using SentencePiece tokenization.
