new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

Active Video Perception: Iterative Evidence Seeking for Agentic Long Video Understanding

Long video understanding (LVU) is challenging because answering real-world queries often depends on sparse, temporally dispersed cues buried in hours of mostly redundant and irrelevant content. While agentic pipelines improve video reasoning capabilities, prevailing frameworks rely on a query-agnostic captioner to perceive video information, which wastes computation on irrelevant content and blurs fine-grained temporal and spatial information. Motivated by active perception theory, we argue that LVU agents should actively decide what, when, and where to observe, and continuously assess whether the current observation is sufficient to answer the query. We present Active Video Perception (AVP), an evidence-seeking framework that treats the video as an interactive environment and acquires compact, queryrelevant evidence directly from pixels. Concretely, AVP runs an iterative plan-observe-reflect process with MLLM agents. In each round, a planner proposes targeted video interactions, an observer executes them to extract time-stamped evidence, and a reflector evaluates the sufficiency of the evidence for the query, either halting with an answer or triggering further observation. Across five LVU benchmarks, AVP achieves highest performance with significant improvements. Notably, AVP outperforms the best agentic method by 5.7% in average accuracy while only requires 18.4% inference time and 12.4% input tokens.

Active-O3: Empowering Multimodal Large Language Models with Active Perception via GRPO

Active vision, also known as active perception, refers to the process of actively selecting where and how to look in order to gather task-relevant information. It is a critical component of efficient perception and decision-making in humans and advanced embodied agents. Recently, the use of Multimodal Large Language Models (MLLMs) as central planning and decision-making modules in robotic systems has gained extensive attention. However, despite the importance of active perception in embodied intelligence, there is little to no exploration of how MLLMs can be equipped with or learn active perception capabilities. In this paper, we first provide a systematic definition of MLLM-based active perception tasks. We point out that the recently proposed GPT-o3 model's zoom-in search strategy can be regarded as a special case of active perception; however, it still suffers from low search efficiency and inaccurate region selection. To address these issues, we propose ACTIVE-O3, a purely reinforcement learning based training framework built on top of GRPO, designed to equip MLLMs with active perception capabilities. We further establish a comprehensive benchmark suite to evaluate ACTIVE-O3 across both general open-world tasks, such as small-object and dense object grounding, and domain-specific scenarios, including small object detection in remote sensing and autonomous driving, as well as fine-grained interactive segmentation. In addition, ACTIVE-O3 also demonstrates strong zero-shot reasoning abilities on the V* Benchmark, without relying on any explicit reasoning data. We hope that our work can provide a simple codebase and evaluation protocol to facilitate future research on active perception in MLLMs.

  • 11 authors
·
May 27 2

UI-JEPA: Towards Active Perception of User Intent through Onscreen User Activity

Generating user intent from a sequence of user interface (UI) actions is a core challenge in comprehensive UI understanding. Recent advancements in multimodal large language models (MLLMs) have led to substantial progress in this area, but their demands for extensive model parameters, computing power, and high latency makes them impractical for scenarios requiring lightweight, on-device solutions with low latency or heightened privacy. Additionally, the lack of high-quality datasets has hindered the development of such lightweight models. To address these challenges, we propose UI-JEPA, a novel framework that employs masking strategies to learn abstract UI embeddings from unlabeled data through self-supervised learning, combined with an LLM decoder fine-tuned for user intent prediction. We also introduce two new UI-grounded multimodal datasets, "Intent in the Wild" (IIW) and "Intent in the Tame" (IIT), designed for few-shot and zero-shot UI understanding tasks. IIW consists of 1.7K videos across 219 intent categories, while IIT contains 914 videos across 10 categories. We establish the first baselines for these datasets, showing that representations learned using a JEPA-style objective, combined with an LLM decoder, can achieve user intent predictions that match the performance of state-of-the-art large MLLMs, but with significantly reduced annotation and deployment resources. Measured by intent similarity scores, UI-JEPA outperforms GPT-4 Turbo and Claude 3.5 Sonnet by 10.0% and 7.2% respectively, averaged across two datasets. Notably, UI-JEPA accomplishes the performance with a 50.5x reduction in computational cost and a 6.6x improvement in latency in the IIW dataset. These results underscore the effectiveness of UI-JEPA, highlighting its potential for lightweight, high-performance UI understanding.

  • 5 authors
·
Sep 6, 2024

DriveAgent-R1: Advancing VLM-based Autonomous Driving with Active Perception and Hybrid Thinking

The advent of Vision-Language Models (VLMs) has significantly advanced end-to-end autonomous driving, demonstrating powerful reasoning abilities for high-level behavior planning tasks. However, existing methods are often constrained by a passive perception paradigm, relying solely on text-based reasoning. This passivity restricts the model's capacity to actively seek crucial visual evidence when faced with uncertainty. To address this, we introduce DriveAgent-R1, the first autonomous driving agent capable of active perception for planning. In complex scenarios, DriveAgent-R1 proactively invokes tools to perform visual reasoning, firmly grounding its decisions in visual evidence, thereby enhancing both interpretability and reliability. Furthermore, we propose a hybrid thinking framework, inspired by human driver cognitive patterns, allowing the agent to adaptively switch between efficient text-only reasoning and robust tool-augmented visual reasoning based on scene complexity. This capability is cultivated through a three-stage progressive training strategy, featuring a core Cascaded Reinforcement Learning (Cascaded RL) phase. Extensive experiments on the Drive-Internal dataset, which is rich in long-tail scenarios, and the public nuScenes dataset show that, with only 3B parameters, DriveAgent-R1 achieves competitive performance comparable to top closed model systems such as GPT-5 and to human driving proficiency while remaining deployment-friendly, offering a proven path toward building more intelligent autonomous driving systems.

  • 7 authors
·
Jul 28

Active-Perceptive Motion Generation for Mobile Manipulation

Mobile Manipulation (MoMa) systems incorporate the benefits of mobility and dexterity, thanks to the enlarged space in which they can move and interact with their environment. MoMa robots can also continuously perceive their environment when equipped with onboard sensors, e.g., an embodied camera. However, extracting task-relevant visual information in unstructured and cluttered environments such as households remains a challenge. In this work, we introduce an active perception pipeline for mobile manipulators to generate motions that are informative toward manipulation tasks such as grasping, in initially unknown, cluttered scenes. Our proposed approach ActPerMoMa generates robot trajectories in a receding horizon fashion, sampling trajectories and computing path-wise utilities that trade-off reconstructing the unknown scene by maximizing the visual information gain and the taskoriented objective, e.g., grasp success by maximizing grasp reachability efficiently. We demonstrate the efficacy of our method in simulated experiments with a dual-arm TIAGo++ MoMa robot performing mobile grasping in cluttered scenes and when its path is obstructed by external obstacles. We empirically analyze the contribution of various utilities and hyperparameters, and compare against representative baselines both with and without active perception objectives. Finally, we demonstrate the transfer of our mobile grasping strategy to the real world, showing a promising direction for active-perceptive MoMa.

  • 3 authors
·
Sep 30, 2023

Move to Understand a 3D Scene: Bridging Visual Grounding and Exploration for Efficient and Versatile Embodied Navigation

Embodied scene understanding requires not only comprehending visual-spatial information that has been observed but also determining where to explore next in the 3D physical world. Existing 3D Vision-Language (3D-VL) models primarily focus on grounding objects in static observations from 3D reconstruction, such as meshes and point clouds, but lack the ability to actively perceive and explore their environment. To address this limitation, we introduce \textbf{M}ove \textbf{t}o \textbf{U}nderstand (\model), a unified framework that integrates active perception with \textbf{3D} vision-language learning, enabling embodied agents to effectively explore and understand their environment. This is achieved by three key innovations: 1) Online query-based representation learning, enabling direct spatial memory construction from RGB-D frames, eliminating the need for explicit 3D reconstruction. 2) A unified objective for grounding and exploring, which represents unexplored locations as frontier queries and jointly optimizes object grounding and frontier selection. 3) End-to-end trajectory learning that combines Vision-Language-Exploration pre-training over a million diverse trajectories collected from both simulated and real-world RGB-D sequences. Extensive evaluations across various embodied navigation and question-answering benchmarks show that MTU3D outperforms state-of-the-art reinforcement learning and modular navigation approaches by 14\%, 23\%, 9\%, and 2\% in success rate on HM3D-OVON, GOAT-Bench, SG3D, and A-EQA, respectively. \model's versatility enables navigation using diverse input modalities, including categories, language descriptions, and reference images. These findings highlight the importance of bridging visual grounding and exploration for embodied intelligence.

  • 12 authors
·
Jul 5

Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning

We apply multi-agent deep reinforcement learning (RL) to train end-to-end robot soccer policies with fully onboard computation and sensing via egocentric RGB vision. This setting reflects many challenges of real-world robotics, including active perception, agile full-body control, and long-horizon planning in a dynamic, partially-observable, multi-agent domain. We rely on large-scale, simulation-based data generation to obtain complex behaviors from egocentric vision which can be successfully transferred to physical robots using low-cost sensors. To achieve adequate visual realism, our simulation combines rigid-body physics with learned, realistic rendering via multiple Neural Radiance Fields (NeRFs). We combine teacher-based multi-agent RL and cross-experiment data reuse to enable the discovery of sophisticated soccer strategies. We analyze active-perception behaviors including object tracking and ball seeking that emerge when simply optimizing perception-agnostic soccer play. The agents display equivalent levels of performance and agility as policies with access to privileged, ground-truth state. To our knowledge, this paper constitutes a first demonstration of end-to-end training for multi-agent robot soccer, mapping raw pixel observations to joint-level actions, that can be deployed in the real world. Videos of the game-play and analyses can be seen on our website https://sites.google.com/view/vision-soccer .

  • 16 authors
·
May 3, 2024 1

AffordBot: 3D Fine-grained Embodied Reasoning via Multimodal Large Language Models

Effective human-agent collaboration in physical environments requires understanding not only what to act upon, but also where the actionable elements are and how to interact with them. Existing approaches often operate at the object level or disjointedly handle fine-grained affordance reasoning, lacking coherent, instruction-driven grounding and reasoning. In this work, we introduce a new task: Fine-grained 3D Embodied Reasoning, which requires an agent to predict, for each referenced affordance element in a 3D scene, a structured triplet comprising its spatial location, motion type, and motion axis, based on a task instruction. To solve this task, we propose AffordBot, a novel framework that integrates Multimodal Large Language Models (MLLMs) with a tailored chain-of-thought (CoT) reasoning paradigm. To bridge the gap between 3D input and 2D-compatible MLLMs, we render surround-view images of the scene and project 3D element candidates into these views, forming a rich visual representation aligned with the scene geometry. Our CoT pipeline begins with an active perception stage, prompting the MLLM to select the most informative viewpoint based on the instruction, before proceeding with step-by-step reasoning to localize affordance elements and infer plausible interaction motions. Evaluated on the SceneFun3D dataset, AffordBot achieves state-of-the-art performance, demonstrating strong generalization and physically grounded reasoning with only 3D point cloud input and MLLMs.

  • 6 authors
·
Nov 13 2

Toward Grounded Social Reasoning

Consider a robot tasked with tidying a desk with a meticulously constructed Lego sports car. A human may recognize that it is not socially appropriate to disassemble the sports car and put it away as part of the "tidying". How can a robot reach that conclusion? Although large language models (LLMs) have recently been used to enable social reasoning, grounding this reasoning in the real world has been challenging. To reason in the real world, robots must go beyond passively querying LLMs and *actively gather information from the environment* that is required to make the right decision. For instance, after detecting that there is an occluded car, the robot may need to actively perceive the car to know whether it is an advanced model car made out of Legos or a toy car built by a toddler. We propose an approach that leverages an LLM and vision language model (VLM) to help a robot actively perceive its environment to perform grounded social reasoning. To evaluate our framework at scale, we release the MessySurfaces dataset which contains images of 70 real-world surfaces that need to be cleaned. We additionally illustrate our approach with a robot on 2 carefully designed surfaces. We find an average 12.9% improvement on the MessySurfaces benchmark and an average 15% improvement on the robot experiments over baselines that do not use active perception. The dataset, code, and videos of our approach can be found at https://minaek.github.io/groundedsocialreasoning.

  • 6 authors
·
Jun 14, 2023

Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches

The vulnerability of deep neural networks to adversarial patches has motivated numerous defense strategies for boosting model robustness. However, the prevailing defenses depend on single observation or pre-established adversary information to counter adversarial patches, often failing to be confronted with unseen or adaptive adversarial attacks and easily exhibiting unsatisfying performance in dynamic 3D environments. Inspired by active human perception and recurrent feedback mechanisms, we develop Embodied Active Defense (EAD), a proactive defensive strategy that actively contextualizes environmental information to address misaligned adversarial patches in 3D real-world settings. To achieve this, EAD develops two central recurrent sub-modules, i.e., a perception module and a policy module, to implement two critical functions of active vision. These models recurrently process a series of beliefs and observations, facilitating progressive refinement of their comprehension of the target object and enabling the development of strategic actions to counter adversarial patches in 3D environments. To optimize learning efficiency, we incorporate a differentiable approximation of environmental dynamics and deploy patches that are agnostic to the adversary strategies. Extensive experiments demonstrate that EAD substantially enhances robustness against a variety of patches within just a few steps through its action policy in safety-critical tasks (e.g., face recognition and object detection), without compromising standard accuracy. Furthermore, due to the attack-agnostic characteristic, EAD facilitates excellent generalization to unseen attacks, diminishing the averaged attack success rate by 95 percent across a range of unseen adversarial attacks.

  • 6 authors
·
Mar 30, 2024

Look, Zoom, Understand: The Robotic Eyeball for Embodied Perception

In embodied AI perception systems, visual perception should be active: the goal is not to passively process static images, but to actively acquire more informative data within pixel and spatial budget constraints. Existing vision models and fixed RGB-D camera systems fundamentally fail to reconcile wide-area coverage with fine-grained detail acquisition, severely limiting their efficacy in open-world robotic applications. To address this issue, we propose EyeVLA, a robotic eyeball for active visual perception that can take proactive actions based on instructions, enabling clear observation of fine-grained target objects and detailed information across a wide spatial extent. EyeVLA discretizes action behaviors into action tokens and integrates them with vision-language models (VLMs) that possess strong open-world understanding capabilities, enabling joint modeling of vision, language, and actions within a single autoregressive sequence. By using the 2D bounding box coordinates to guide the reasoning chain and applying reinforcement learning to refine the viewpoint selection policy, we transfer the open-world scene understanding capability of the VLM to a vision language action (VLA) policy using only minimal real-world data. Experiments show that our system efficiently performs instructed scenes in real-world environments and actively acquires more accurate visual information through instruction-driven actions of rotation and zoom, thereby achieving strong environmental perception capabilities. EyeVLA introduces a novel robotic vision system that leverages detailed and spatially rich, large-scale embodied data, and actively acquires highly informative visual observations for downstream embodied tasks.

  • 5 authors
·
Nov 19

Neural Brain: A Neuroscience-inspired Framework for Embodied Agents

The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.

Dispider: Enabling Video LLMs with Active Real-Time Interaction via Disentangled Perception, Decision, and Reaction

Active Real-time interaction with video LLMs introduces a new paradigm for human-computer interaction, where the model not only understands user intent but also responds while continuously processing streaming video on the fly. Unlike offline video LLMs, which analyze the entire video before answering questions, active real-time interaction requires three capabilities: 1) Perception: real-time video monitoring and interaction capturing. 2) Decision: raising proactive interaction in proper situations, 3) Reaction: continuous interaction with users. However, inherent conflicts exist among the desired capabilities. The Decision and Reaction require a contrary Perception scale and grain, and the autoregressive decoding blocks the real-time Perception and Decision during the Reaction. To unify the conflicted capabilities within a harmonious system, we present Dispider, a system that disentangles Perception, Decision, and Reaction. Dispider features a lightweight proactive streaming video processing module that tracks the video stream and identifies optimal moments for interaction. Once the interaction is triggered, an asynchronous interaction module provides detailed responses, while the processing module continues to monitor the video in the meantime. Our disentangled and asynchronous design ensures timely, contextually accurate, and computationally efficient responses, making Dispider ideal for active real-time interaction for long-duration video streams. Experiments show that Dispider not only maintains strong performance in conventional video QA tasks, but also significantly surpasses previous online models in streaming scenario responses, thereby validating the effectiveness of our architecture. The code and model are released at https://github.com/Mark12Ding/Dispider.

  • 8 authors
·
Jan 6 5

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic Sign Perception

All vehicles must follow the rules that govern traffic behavior, regardless of whether the vehicles are human-driven or Connected Autonomous Vehicles (CAVs). Road signs indicate locally active rules, such as speed limits and requirements to yield or stop. Recent research has demonstrated attacks, such as adding stickers or projected colored patches to signs, that cause CAV misinterpretation, resulting in potential safety issues. Humans can see and potentially defend against these attacks. But humans can not detect what they can not observe. We have developed an effective physical-world attack that leverages the sensitivity of filterless image sensors and the properties of Infrared Laser Reflections (ILRs), which are invisible to humans. The attack is designed to affect CAV cameras and perception, undermining traffic sign recognition by inducing misclassification. In this work, we formulate the threat model and requirements for an ILR-based traffic sign perception attack to succeed. We evaluate the effectiveness of the ILR attack with real-world experiments against two major traffic sign recognition architectures on four IR-sensitive cameras. Our black-box optimization methodology allows the attack to achieve up to a 100% attack success rate in indoor, static scenarios and a >80.5% attack success rate in our outdoor, moving vehicle scenarios. We find the latest state-of-the-art certifiable defense is ineffective against ILR attacks as it mis-certifies >33.5% of cases. To address this, we propose a detection strategy based on the physical properties of IR laser reflections which can detect 96% of ILR attacks.

  • 6 authors
·
Jan 7, 2024

PhysVLM-AVR: Active Visual Reasoning for Multimodal Large Language Models in Physical Environments

Visual reasoning in multimodal large language models (MLLMs) has primarily been studied in static, fully observable settings, limiting their effectiveness in real-world environments where information is often incomplete due to occlusion or limited field of view. Humans, in contrast, actively explore and interact with their environment-moving, examining, and manipulating objects-to gather information through a closed-loop process integrating perception, reasoning, and action. Inspired by this human capability, we introduce the Active Visual Reasoning (AVR) task, extending visual reasoning to partially observable, interactive environments. AVR necessitates agents to: (1) actively acquire information via sequential physical actions, (2) integrate observations across multiple steps for coherent reasoning, and (3) dynamically adjust decisions based on evolving visual feedback. To rigorously evaluate AVR, we introduce CLEVR-AVR, a simulation benchmark featuring multi-round interactive environments designed to assess both reasoning correctness and information-gathering efficiency. We present AVR-152k, a large-scale dataset that offers rich Chain-of-Thought (CoT) annotations detailing iterative reasoning for uncertainty identification, action-conditioned information gain prediction, and information-maximizing action selection, crucial for training agents in a higher-order Markov Decision Process. Building on this, we develop PhysVLM-AVR, an MLLM achieving state-of-the-art performance on CLEVR-AVR, embodied reasoning (OpenEQA, RoboVQA), and passive visual reasoning (GeoMath, Geometry30K). Our analysis also reveals that current embodied MLLMs, despite detecting information incompleteness, struggle to actively acquire and integrate new information through interaction, highlighting a fundamental gap in active reasoning capabilities.

  • 8 authors
·
Oct 23 1

Beyond Seeing: Evaluating Multimodal LLMs on Tool-Enabled Image Perception, Transformation, and Reasoning

Multimodal Large Language Models (MLLMs) are increasingly applied in real-world scenarios where user-provided images are often imperfect, requiring active image manipulations such as cropping, editing, or enhancement to uncover salient visual cues. Beyond static visual perception, MLLMs must also think with images: dynamically transforming visual content and integrating it with other tools to solve complex tasks. However, this shift from treating vision as passive context to a manipulable cognitive workspace remains underexplored. Most existing benchmarks still follow a think about images paradigm, where images are regarded as static inputs. To address this gap, we introduce VisualToolBench, a visual tool-use reasoning benchmark that rigorously evaluates MLLMs' ability to perceive, transform, and reason across complex visual-textual tasks under the think-with-images paradigm. VisualToolBench comprises 1,204 challenging, open-ended vision tasks (603 single-turn, 601 multi-turn) spanning across five diverse domains, each paired with detailed rubrics to enable systematic evaluation. Our evaluation shows that current MLLMs struggle with tasks requiring effective integration of vision and general-purpose tools. Even the strongest model (GPT-5-think) reaches only 18.68% pass rate. We further observe divergent tool-use behaviors, with OpenAI models benefiting from diverse image manipulations while Gemini-2.5-pro shows no improvement. By introducing the first benchmark centered on think with images, VisualToolBench offers critical insights for advancing visual intelligence in MLLMs.

  • 11 authors
·
Oct 14

Ming-Flash-Omni: A Sparse, Unified Architecture for Multimodal Perception and Generation

We propose Ming-Flash-Omni, an upgraded version of Ming-Omni, built upon a sparser Mixture-of-Experts (MoE) variant of Ling-Flash-2.0 with 100 billion total parameters, of which only 6.1 billion are active per token. This architecture enables highly efficient scaling (dramatically improving computational efficiency while significantly expanding model capacity) and empowers stronger unified multimodal intelligence across vision, speech, and language, representing a key step toward Artificial General Intelligence (AGI). Compared to its predecessor, the upgraded version exhibits substantial improvements across multimodal understanding and generation. We significantly advance speech recognition capabilities, achieving state-of-the-art performance in contextual ASR and highly competitive results in dialect-aware ASR. In image generation, Ming-Flash-Omni introduces high-fidelity text rendering and demonstrates marked gains in scene consistency and identity preservation during image editing. Furthermore, Ming-Flash-Omni introduces generative segmentation, a capability that not only achieves strong standalone segmentation performance but also enhances spatial control in image generation and improves editing consistency. Notably, Ming-Flash-Omni achieves state-of-the-art results in text-to-image generation and generative segmentation, and sets new records on all 12 contextual ASR benchmarks, all within a single unified architecture.

inclusionAI inclusionAI
·
Oct 28 1

AudioGenie-Reasoner: A Training-Free Multi-Agent Framework for Coarse-to-Fine Audio Deep Reasoning

Audio deep reasoning is a challenging task that requires expert-level perception, multi-step logical inference, and the integration of contextual knowledge. However, existing models suffer from a gap between audio perception and reasoning abilities due to the lack of training data with explicit reasoning chains and the absence of mechanisms for active exploration and iterative refinement. To address these challenges, we propose AudioGenie-Reasoner (AGR), the first unified training-free multi-agent system that coordinates perception and reasoning over an evolving chain of textual evidence. Our key idea is a paradigm shift that transforms audio deep reasoning into complex text understanding task from a new perspective, thereby unlocking the full potential of large language models. Specifically, the design of AGR mimics the human coarse-to-fine cognitive process. It first transforms the input audio into a coarse text-based document. Then, we design a novel proactive iterative document refinement loop, featuring tool-augmented routes and specialized agents, to continuously search for missing information and augment the evidence chain in a coarse-to-fine manner until sufficient question-related information is gathered for making final predictions. Experimental results show that AGR achieves state-of-the-art (SOTA) performance over existing open-source audio deep reasoning models across various benchmarks. The code will be available at https://github.com/ryysayhi/AudioGenie-Reasoner.

  • 4 authors
·
Sep 21

Exploring the Evolution of Physics Cognition in Video Generation: A Survey

Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.

  • 11 authors
·
Mar 27 2

Select2Drive: Pragmatic Communications for Real-Time Collaborative Autonomous Driving

Vehicle-to-Everything communications-assisted Autonomous Driving (V2X-AD) has witnessed remarkable advancements in recent years, with pragmatic communications (PragComm) emerging as a promising paradigm for real-time collaboration among vehicles and other agents.Simultaneously, extensive research has explored the interplay between collaborative perception and decision-making in end-to-end driving frameworks.In this work, we revisit the collaborative driving problem and propose the Select2Drive framework to optimize the utilization of limited computational and communication resources.Particularly, to mitigate cumulative latency in perception and decision-making, Select2Drive introduces Distributed Predictive Perception (DPP) by formulating an active prediction paradigm and simplifies high-dimensional semantic feature prediction into computation cost-efficient, motion-aware reconstruction. Given the "less is more" principle that a broadened perceptual horizon possibly confuses the decision module rather than contributing to it, Select2Drive utilizes Area-of-Importance-based PragComm (APC) to prioritize the communications of critical regions, thus boosting both communication efficiency and decision-making efficacy. Empirical evaluations on the V2Xverse dataset and CARLA driving simulator demonstrate that Select2Drive achieves a 11.31% (resp. 7.69%) improvement in offline perception tasks under limited bandwidth (resp. pose error conditions). Moreover, it delivers at most 14.68% and 31.76% enhancement in closed-loop driving scores and route completion rates, particularly in scenarios characterized by dense traffic and high-speed dynamics.

  • 5 authors
·
Jan 21