Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeIC-Cache: Efficient Large Language Model Serving via In-context Caching
Large language models (LLMs) have excelled in various applications, yet serving them at scale is challenging due to their substantial resource demands and high latency. Our real-world studies reveal that over 70% of user requests to LLMs have semantically similar counterparts, suggesting the potential for knowledge transfer among requests. However, naively caching and reusing past responses leads to a big quality drop. In this paper, we introduce IC-Cache, a caching system that enables live LLM capability augmentation to improve serving efficiency: by leveraging historical request-response pairs from larger models as in-context examples, IC-Cache empowers small LLMs to imitate and even exceed the compositional abilities (e.g., reasoning) of their larger counterparts, enabling selective offloading of requests to reduce cost and latency. Achieving this live augmentation at scale introduces intricate trade-offs between response quality, latency, and system throughput. For a new request, IC-Cache efficiently selects similar, high-utility examples to prepend them to the new request's input. At scale, it adaptively routes requests across LLMs of varying capabilities, accounting for response quality and serving loads. IC-Cache employs a cost-aware cache replay mechanism that refines example quality offline to maximize online cache utility and efficiency. Evaluations on millions of realistic requests demonstrate that IC-Cache improves LLM serving throughput by 1.4-5.9x and reduces latency by 28-71% without hurting response quality.
Cost-Efficient Serving of LLM Agents via Test-Time Plan Caching
LLM-based agentic applications have shown increasingly remarkable capabilities in complex workflows but incur substantial costs due to extensive planning and reasoning requirements. Existing LLM caching techniques (like context caching and semantic caching), primarily designed for serving chatbots, are insufficient for agentic applications where outputs depend on external data or environmental contexts. We propose agentic plan caching, a novel approach that extracts, stores, adapts, and reuses structured plan templates from planning stages of agentic applications across semantically similar tasks to reduce the cost of serving. Unlike traditional semantic caching, our system extracts plan templates from completed agent executions at test-time, employs keyword extraction to match new requests against cached plans, and utilizes lightweight models to adapt these templates to task-specific plans with contexts. Evaluation across multiple real-world agentic applications shows that our system can reduce costs by 46.62% on average while maintaining performance, offering a more efficient solution for serving LLM-based agents that complements existing LLM serving infrastructures.
Language Modeling with Learned Meta-Tokens
While modern Transformer-based language models (LMs) have achieved major success in multi-task generalization, they often struggle to capture long-range dependencies within their context window. This work introduces a novel approach using meta-tokens, special tokens injected during pre-training, along with a dedicated meta-attention mechanism to guide LMs to use these tokens. We pre-train a language model with a modified GPT-2 architecture equipped with meta-attention in addition to causal multi-head attention, and study the impact of these tokens on a suite of synthetic tasks. We find that data-efficient language model pre-training on fewer than 100B tokens utilizing meta-tokens and our meta-attention mechanism achieves strong performance on these tasks after fine-tuning. We suggest that these gains arise due to the meta-tokens sharpening the positional encoding. This enables them to operate as trainable, content-based landmarks, implicitly compressing preceding context and "caching" it in the meta-token. At inference-time, the meta-token points to relevant context, facilitating length generalization up to 2times its context window, even after extension with YaRN. We provide further evidence of these behaviors by visualizing model internals to study the residual stream, and assessing the compression quality by information-theoretic analysis on the rate-distortion tradeoff. Our findings suggest that pre-training LMs with meta-tokens offers a simple, data-efficient method to enhance long-context language modeling performance, while introducing new insights into the nature of their behavior towards length generalization.
Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources. However, RAG introduces challenges such as retrieval latency, potential errors in document selection, and increased system complexity. With the advent of large language models (LLMs) featuring significantly extended context windows, this paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval. Our method involves preloading all relevant resources, especially when the documents or knowledge for retrieval are of a limited and manageable size, into the LLM's extended context and caching its runtime parameters. During inference, the model utilizes these preloaded parameters to answer queries without additional retrieval steps. Comparative analyses reveal that CAG eliminates retrieval latency and minimizes retrieval errors while maintaining context relevance. Performance evaluations across multiple benchmarks highlight scenarios where long-context LLMs either outperform or complement traditional RAG pipelines. These findings suggest that, for certain applications, particularly those with a constrained knowledge base, CAG provide a streamlined and efficient alternative to RAG, achieving comparable or superior results with reduced complexity.
XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
In-context learning (ICL) approaches typically leverage prompting to condition decoder-only language model generation on reference information. Just-in-time processing of a context is inefficient due to the quadratic cost of self-attention operations, and caching is desirable. However, caching transformer states can easily require almost as much space as the model parameters. When the right context isn't known in advance, caching ICL can be challenging. This work addresses these limitations by introducing models that, inspired by the encoder-decoder architecture, use cross-attention to condition generation on reference text without the prompt. More precisely, we leverage pre-trained decoder-only models and only train a small number of added layers. We use Question-Answering (QA) as a testbed to evaluate the ability of our models to perform conditional generation and observe that they outperform ICL, are comparable to fine-tuned prompted LLMs, and drastically reduce the space footprint relative to standard KV caching by two orders of magnitude.
CacheGen: Fast Context Loading for Language Model Applications
As large language models (LLMs) take on more complex tasks, their inputs incorporate longer contexts to respond to questions that require domain knowledge or user-specific conversational histories. Yet, using long contexts poses a challenge for responsive LLM systems, as nothing can be generated until all the contexts are fetched to and processed by the LLM. Existing systems optimize only the computation delay in context processing (e.g., by caching intermediate key-value features of the text context) but often cause longer network delays in context fetching (e.g., key-value features consume orders of magnitude larger bandwidth than the text context). This paper presents CacheGen to minimize the delays in fetching and processing contexts for LLMs. CacheGen reduces the bandwidth needed for transmitting long contexts' key-value (KV) features through a novel encoder that compresses KV features into more compact bitstream representations. The encoder combines adaptive quantization with a tailored arithmetic coder, taking advantage of the KV features' distributional properties, such as locality across tokens. Furthermore, CacheGen minimizes the total delay in fetching and processing a context by using a controller that determines when to load the context as compressed KV features or raw text and picks the appropriate compression level if loaded as KV features. We test CacheGen on three models of various sizes and three datasets of different context lengths. Compared to recent methods that handle long contexts, CacheGen reduces bandwidth usage by 3.7-4.3x and the total delay in fetching and processing contexts by 2.7-3x while maintaining similar LLM performance on various tasks as loading the text contexts.
APE: Faster and Longer Context-Augmented Generation via Adaptive Parallel Encoding
Context-augmented generation (CAG) techniques, including RAG and ICL, require the efficient combination of multiple contexts to generate responses to user queries. Directly inputting these contexts as a sequence introduces a considerable computational burden by re-encoding the combined selection of contexts for every request. To address this, we explore the promising potential of parallel encoding to independently pre-compute and cache each context's KV states. This approach enables the direct loading of cached states during inference while accommodating more contexts through position reuse across contexts. However, due to misalignments in attention distribution, directly applying parallel encoding results in a significant performance drop. To enable effective and efficient CAG, we propose Adaptive Parallel Encoding (APE), which brings shared prefix, attention temperature, and scaling factor to align the distribution of parallel encoding with sequential encoding. Results on RAG and ICL tasks demonstrate that APE can preserve 98% and 93% sequential encoding performance using the same inputs while outperforming parallel encoding by 3.6% and 7.9%, respectively. It also scales to many-shot CAG, effectively encoding hundreds of contexts in parallel. Efficiency evaluation shows that APE can achieve an end-to-end 4.5times speedup by reducing 28times prefilling time for a 128K-length context.
SCBench: A KV Cache-Centric Analysis of Long-Context Methods
Long-context LLMs have enabled numerous downstream applications but also introduced significant challenges related to computational and memory efficiency. To address these challenges, optimizations for long-context inference have been developed, centered around the KV cache. However, existing benchmarks often evaluate in single-request, neglecting the full lifecycle of the KV cache in real-world use. This oversight is particularly critical, as KV cache reuse has become widely adopted in LLMs inference frameworks, such as vLLM and SGLang, as well as by LLM providers, including OpenAI, Microsoft, Google, and Anthropic. To address this gap, we introduce SCBench(SharedContextBench), a comprehensive benchmark for evaluating long-context methods from a KV cachecentric perspective: 1) KV cache generation, 2) KV cache compression, 3) KV cache retrieval, 4) KV cache loading. Specifically, SCBench uses test examples with shared context, ranging 12 tasks with two shared context modes, covering four categories of long-context capabilities: string retrieval, semantic retrieval, global information, and multi-task. With it, we provide an extensive KV cache-centric analysis of eight categories long-context solutions, including Gated Linear RNNs, Mamba-Attention hybrids, and efficient methods such as sparse attention, KV cache dropping, quantization, retrieval, loading, and prompt compression. The evaluation is conducted on 8 long-context LLMs. Our findings show that sub-O(n) memory methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory and sub-O(n^2) pre-filling computation perform robustly. Dynamic sparsity yields more expressive KV caches than static patterns, and layer-level sparsity in hybrid architectures reduces memory usage with strong performance. Additionally, we identify attention distribution shift issues in long-generation scenarios. https://aka.ms/SCBench.
Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data
This report investigates enhancing semantic caching effectiveness by employing specialized, fine-tuned embedding models. Semantic caching relies on embedding similarity rather than exact key matching, presenting unique challenges in balancing precision, query latency, and computational efficiency. We propose leveraging smaller, domain-specific embedding models, fine-tuned with targeted real-world and synthetically generated datasets. Our empirical evaluations demonstrate that compact embedding models fine-tuned for just one epoch on specialized datasets significantly surpass both state-of-the-art open-source and proprietary alternatives in precision and recall. Moreover, we introduce a novel synthetic data generation pipeline for the semantic cache that mitigates the challenge of limited domain-specific annotated data, further boosting embedding performance. Our approach effectively balances computational overhead and accuracy, establishing a viable and efficient strategy for practical semantic caching implementations.
KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction
Transformer-based large language models (LLMs) cache context as key-value (KV) pairs during inference. As context length grows, KV cache sizes expand, leading to substantial memory overhead and increased attention latency. This paper introduces KVzip, a query-agnostic KV cache eviction method enabling effective reuse of compressed KV caches across diverse queries. KVzip quantifies the importance of a KV pair using the underlying LLM to reconstruct original contexts from cached KV pairs, subsequently evicting pairs with lower importance. Extensive empirical evaluations demonstrate that KVzip reduces KV cache size by 3-4times and FlashAttention decoding latency by approximately 2times, with negligible performance loss in question-answering, retrieval, reasoning, and code comprehension tasks. Evaluations include various models such as LLaMA3.1-8B, Qwen2.5-14B, and Gemma3-12B, with context lengths reaching up to 170K tokens. KVzip significantly outperforms existing query-aware KV eviction methods, which suffer from performance degradation even at a 90% cache budget ratio under multi-query scenarios.
LaCache: Ladder-Shaped KV Caching for Efficient Long-Context Modeling of Large Language Models
Recent advancements in Large Language Models (LLMs) have spurred interest in numerous applications requiring robust long-range capabilities, essential for processing extensive input contexts and continuously generating extended outputs. As sequence lengths increase, the number of Key-Value (KV) pairs in LLMs escalates, creating a significant efficiency bottleneck. In this paper, we propose a new KV cache optimization paradigm called LaCache, a training-free method for efficient and accurate generative inference of LLMs. LaCache enables LLMs to simultaneously address both of the critical challenges in long-range modeling: robust long-range capabilities and continuous generation without running out-of-memory (OOM). Specifically, LaCache integrates two key innovations: (1) a ladder-shaped KV cache pattern that stores KV pairs not only sequentially (left-to-right within each layer) but also across layers (from shallow to deep), providing an extended span for capturing long-range dependencies under a fixed storage budget, thereby boosting long-range capabilities; and (2) an iterative compaction mechanism that progressively compresses older caches, freeing up space for new tokens within a fixed cache size. This token distance-based dynamic compression enables more effective continuous generation under constrained cache budgets. Experiments across various tasks, benchmarks, and LLM models consistently validate LaCache's effectiveness in enhancing LLMs' long-range capabilities. Our code is available at https://github.com/GATECH-EIC/LaCache.
Key, Value, Compress: A Systematic Exploration of KV Cache Compression Techniques
Large language models (LLMs) have demonstrated exceptional capabilities in generating text, images, and video content. However, as context length grows, the computational cost of attention increases quadratically with the number of tokens, presenting significant efficiency challenges. This paper presents an analysis of various Key-Value (KV) cache compression strategies, offering a comprehensive taxonomy that categorizes these methods by their underlying principles and implementation techniques. Furthermore, we evaluate their impact on performance and inference latency, providing critical insights into their effectiveness. Our findings highlight the trade-offs involved in KV cache compression and its influence on handling long-context scenarios, paving the way for more efficient LLM implementations.
EpiCache: Episodic KV Cache Management for Long Conversational Question Answering
Recent advances in large language models (LLMs) have extended context lengths, enabling assistants to sustain long histories for coherent, personalized responses. This ability, however, hinges on Key-Value (KV) caching, whose memory grows linearly with dialogue length and quickly dominates under strict resource constraints. An active line of research for reducing this overhead is KV cache compression, which seeks to limit cache size while preserving accuracy. Yet existing methods face two major limitations: (i) evicting entries after full-context prefill causes unbounded peak memory, and (ii) query-dependent eviction narrows the cache to a single query, leading to degraded accuracy in multi-turn conversations. We introduce EpiCache, a training-free KV cache management framework for long conversational question answering (LongConvQA) under fixed memory budgets. EpiCache bounds cache growth through block-wise prefill and preserves topic-relevant context via episodic KV compression, which clusters conversation history into coherent episodes and applies episode-specific KV cache eviction. We further design an adaptive layer-wise budget allocation strategy that measures each layer's sensitivity to eviction and distributes the memory budget across layers accordingly. Across three LongConvQA benchmarks, EpiCache improves accuracy by up to 40% over recent baselines, sustains near-full KV accuracy under 4-6x compression, and reduces latency and memory by up to 2.4x and 3.5x, thereby enabling efficient multi-turn interaction under strict resource constraints.
ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression
Large Language Models (LLMs) have been widely deployed in a variety of applications, and the context length is rapidly increasing to handle tasks such as long-document QA and complex logical reasoning. However, long context poses significant challenges for inference efficiency, including high memory costs of key-value (KV) cache and increased latency due to extensive memory accesses. Recent works have proposed compressing KV cache to approximate computation, but these methods either evict tokens permanently, never recalling them for later inference, or recall previous tokens at the granularity of pages divided by textual positions. Both approaches degrade the model accuracy and output quality. To achieve efficient and accurate recallable KV cache compression, we introduce ClusterKV, which recalls tokens at the granularity of semantic clusters. We design and implement efficient algorithms and systems for clustering, selection, indexing and caching. Experiment results show that ClusterKV attains negligible accuracy loss across various tasks with 32k context lengths, using only a 1k to 2k KV cache budget, and achieves up to a 2times speedup in latency and a 2.5times improvement in decoding throughput. Compared to SoTA recallable KV compression methods, ClusterKV demonstrates higher model accuracy and output quality, while maintaining or exceeding inference efficiency.
Challenges in Deploying Long-Context Transformers: A Theoretical Peak Performance Analysis
Transformer-based long context generative models power emerging AI applications like hour-long video understanding and project-level coding agent. Deploying long context transformers (e.g., 100K to 10M tokens) is prohibitively expensive compared to short context (e.g., 4K tokens) model variants. Reducing the cost of long-context transformers is becoming a pressing research and engineering challenge starting from the year of 2024. This work describes a concurrent programming framework for quantitatively analyzing the efficiency challenges in serving multiple long-context requests under limited size of GPU high-bandwidth memory (HBM) regime. We give a detailed analysis of how all additional computational costs, compared to 4K context, trace back to one single source: the large size of the KV cache. We use a 34B GPT-3.5 level model of 50K context on A100 NVLink as a running example, and describe how its large KV cache causes four types of deployment challenges: (1) prefilling long inputs takes much longer compute time and GPU memory than short inputs; (2) after prefilling, the large KV cache residing on the GPU HBM substantially restricts the number of concurrent users being served; (3) during decoding, repeatedly reading the KV cache from HBM to SM largely increases latency; (4) when KV cache memory overflows, swapping it from HBM to DDR causes significant context switching latency. We use this framework to analyze existing works and identify possibilities of combining them to build end-to-end systems. Overall, this work offers a foundational framework for analyzing long context transformer deployment and identifies directions towards reducing the inference cost of 1M context to be as cheap as 4K.
Neurocache: Efficient Vector Retrieval for Long-range Language Modeling
This paper introduces Neurocache, an approach to extend the effective context size of large language models (LLMs) using an external vector cache to store its past states. Like recent vector retrieval approaches, Neurocache uses an efficient k-nearest-neighbor (kNN) algorithm to retrieve relevant past states and incorporate them into the attention process. Neurocache improves upon previous methods by (1) storing compressed states, which reduces cache size; (2) performing a single retrieval operation per token which increases inference speed; and (3) extending the retrieval window to neighboring states, which improves both language modeling and downstream task accuracy. Our experiments show the effectiveness of Neurocache both for models trained from scratch and for pre-trained models such as Llama2-7B and Mistral-7B when enhanced with the cache mechanism. We also compare Neurocache with text retrieval methods and show improvements in single-document question-answering and few-shot learning tasks. We made the source code available under: https://github.com/alisafaya/neurocache
RAGBoost: Efficient Retrieval-Augmented Generation with Accuracy-Preserving Context Reuse
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with retrieved context but often suffers from downgraded prefill performance as modern applications demand longer and more complex inputs. Existing caching techniques either preserve accuracy with low cache reuse or improve reuse at the cost of degraded reasoning quality. We present RAGBoost, an efficient RAG system that achieves high cache reuse without sacrificing accuracy through accuracy-preserving context reuse. RAGBoost detects overlapping retrieved items across concurrent sessions and multi-turn interactions, using efficient context indexing, ordering, and de-duplication to maximize reuse, while lightweight contextual hints maintain reasoning fidelity. It integrates seamlessly with existing LLM inference engines and improves their prefill performance by 1.5-3X over state-of-the-art methods, while preserving or even enhancing reasoning accuracy across diverse RAG and agentic AI workloads. Our code is released at: https://github.com/Edinburgh-AgenticAI/RAGBoost.
Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 50% and 27% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
BatchLLM: Optimizing Large Batched LLM Inference with Global Prefix Sharing and Throughput-oriented Token Batching
Many LLM tasks are performed in large batches or even offline, and the performance indictor for which is throughput. These tasks usually show the characteristic of prefix sharing, where different prompt input can partially show the common prefix. However, the existing LLM inference engines tend to optimize the streaming requests and show limitations of supporting the large batched tasks with the prefix sharing characteristic. The existing solutions use the LRU-based cache to reuse the KV context of common prefix. The KV context that is about to be reused may prematurely be evicted with the implicit cache management. Even if not evicted, the lifetime of the shared KV context is extended since requests sharing the same context are not scheduled together, resulting in larger memory usage. These streaming oriented systems schedule the requests in the first-come-first-serve or similar order. As a result, the requests with larger ratio of decoding steps may be scheduled too late to be able to mix with the prefill chunks to increase the hardware utilization. Besides, the token and request number based batching can limit the size of token-batch, which keeps the GPU from saturating for the iterations dominated by decoding tokens. We propose BatchLLM to address the above problems. BatchLLM explicitly identifies the common prefixes globally. The requests sharing the same prefix will be scheduled together to reuse the KV context the best, which also shrinks the lifetime of common KV memory. BatchLLM reorders the requests and schedules the requests with larger ratio of decoding first to better mix the decoding tokens with the latter prefill chunks and applies memory-centric token batching to enlarge the token-batch sizes, which helps to increase the GPU utilization. Extensive evaluation shows that BatchLLM outperforms vLLM by 1.1x to 2x on a set of microbenchmarks and two typical industry workloads.
Cartridges: Lightweight and general-purpose long context representations via self-study
Large language models are often used to answer queries grounded in large text corpora (e.g. codebases, legal documents, or chat histories) by placing the entire corpus in the context window and leveraging in-context learning (ICL). Although current models support contexts of 100K-1M tokens, this setup is costly to serve because the memory consumption of the KV cache scales with input length. We explore an alternative: training a smaller KV cache offline on each corpus. At inference time, we load this trained KV cache, which we call a Cartridge, and decode a response. Critically, the cost of training a Cartridge can be amortized across all the queries referencing the same corpus. However, we find that the naive approach of training the Cartridge with next-token prediction on the corpus is not competitive with ICL. Instead, we propose self-study, a training recipe in which we generate synthetic conversations about the corpus and train the Cartridge with a context-distillation objective. We find that Cartridges trained with self-study replicate the functionality of ICL, while being significantly cheaper to serve. On challenging long-context benchmarks, Cartridges trained with self-study match ICL performance while using 38.6x less memory and enabling 26.4x higher throughput. Self-study also extends the model's effective context length (e.g. from 128k to 484k tokens on MTOB) and surprisingly, leads to Cartridges that can be composed at inference time without retraining.
Finch: Prompt-guided Key-Value Cache Compression
Recent large language model applications, such as Retrieval-Augmented Generation and chatbots, have led to an increased need to process longer input contexts. However, this requirement is hampered by inherent limitations. Architecturally, models are constrained by a context window defined during training. Additionally, processing extensive texts requires substantial GPU memory. We propose a novel approach, Finch, to compress the input context by leveraging the pre-trained model weights of the self-attention. Given a prompt and a long text, Finch iteratively identifies the most relevant Key (K) and Value (V) pairs over chunks of the text conditioned on the prompt. Only such pairs are stored in the KV cache, which, within the space constrained by the context window, ultimately contains a compressed version of the long text. Our proposal enables models to consume large inputs even with high compression (up to 93x) while preserving semantic integrity without the need for fine-tuning.
RazorAttention: Efficient KV Cache Compression Through Retrieval Heads
The memory and computational demands of Key-Value (KV) cache present significant challenges for deploying long-context language models. Previous approaches attempt to mitigate this issue by selectively dropping tokens, which irreversibly erases critical information that might be needed for future queries. In this paper, we propose a novel compression technique for KV cache that preserves all token information. Our investigation reveals that: i) Most attention heads primarily focus on the local context; ii) Only a few heads, denoted as retrieval heads, can essentially pay attention to all input tokens. These key observations motivate us to use separate caching strategy for attention heads. Therefore, we propose RazorAttention, a training-free KV cache compression algorithm, which maintains a full cache for these crucial retrieval heads and discards the remote tokens in non-retrieval heads. Furthermore, we introduce a novel mechanism involving a "compensation token" to further recover the information in the dropped tokens. Extensive evaluations across a diverse set of large language models (LLMs) demonstrate that RazorAttention achieves a reduction in KV cache size by over 70% without noticeable impacts on performance. Additionally, RazorAttention is compatible with FlashAttention, rendering it an efficient and plug-and-play solution that enhances LLM inference efficiency without overhead or retraining of the original model.
Not All Heads Matter: A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning
Key-Value (KV) caching is a common technique to enhance the computational efficiency of Large Language Models (LLMs), but its memory overhead grows rapidly with input length. Prior work has shown that not all tokens are equally important for text generation, proposing layer-level KV cache compression to selectively retain key information. Recognizing the distinct roles of attention heads in generation, we propose HeadKV, a head-level KV cache compression method, and HeadKV-R2, which leverages a novel contextual reasoning ability estimation for compression. Our approach operates at the level of individual heads, estimating their importance for contextual QA tasks that require both retrieval and reasoning capabilities. Extensive experiments across diverse benchmarks (LongBench, LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct), and long-context abilities tests demonstrate that our head-level KV cache compression significantly outperforms strong baselines, particularly in low-resource settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the KV cache while achieving 97% of the performance of the full KV cache on the contextual question answering benchmark.
Attention Entropy is a Key Factor: An Analysis of Parallel Context Encoding with Full-attention-based Pre-trained Language Models
Large language models have shown remarkable performance across a wide range of language tasks, owing to their exceptional capabilities in context modeling. The most commonly used method of context modeling is full self-attention, as seen in standard decoder-only Transformers. Although powerful, this method can be inefficient for long sequences and may overlook inherent input structures. To address these problems, an alternative approach is parallel context encoding, which splits the context into sub-pieces and encodes them parallelly. Because parallel patterns are not encountered during training, naively applying parallel encoding leads to performance degradation. However, the underlying reasons and potential mitigations are unclear. In this work, we provide a detailed analysis of this issue and identify that unusually high attention entropy can be a key factor. Furthermore, we adopt two straightforward methods to reduce attention entropy by incorporating attention sinks and selective mechanisms. Experiments on various tasks reveal that these methods effectively lower irregular attention entropy and narrow performance gaps. We hope this study can illuminate ways to enhance context modeling mechanisms.
Farewell to Length Extrapolation, a Training-Free Infinite Context with Finite Attention Scope
The maximum supported context length is a critical bottleneck limiting the practical application of the Large Language Model (LLM). Although existing length extrapolation methods can extend the context of LLMs to millions of tokens, these methods all have an explicit upper bound. In this work, we propose LongCache, a training-free approach that enables LLM to support an infinite context with finite context scope, through full-context cache selection and training-free integration. This effectively frees LLMs from the length extrapolation issue. We validate LongCache on the LongBench and L-Eval and demonstrate its performance is on par with traditional full-attention mechanisms. Furthermore, we have applied LongCache on mainstream LLMs, including LLaMA3 and Mistral-v0.3, enabling them to support context lengths of at least 400K in Needle-In-A-Haystack tests. We will improve the efficiency of LongCache by GPU-aware optimization soon.
MixCache: Mixture-of-Cache for Video Diffusion Transformer Acceleration
Leveraging the Transformer architecture and the diffusion process, video DiT models have emerged as a dominant approach for high-quality video generation. However, their multi-step iterative denoising process incurs high computational cost and inference latency. Caching, a widely adopted optimization method in DiT models, leverages the redundancy in the diffusion process to skip computations in different granularities (e.g., step, cfg, block). Nevertheless, existing caching methods are limited to single-granularity strategies, struggling to balance generation quality and inference speed in a flexible manner. In this work, we propose MixCache, a training-free caching-based framework for efficient video DiT inference. It first distinguishes the interference and boundary between different caching strategies, and then introduces a context-aware cache triggering strategy to determine when caching should be enabled, along with an adaptive hybrid cache decision strategy for dynamically selecting the optimal caching granularity. Extensive experiments on diverse models demonstrate that, MixCache can significantly accelerate video generation (e.g., 1.94times speedup on Wan 14B, 1.97times speedup on HunyuanVideo) while delivering both superior generation quality and inference efficiency compared to baseline methods.
SCOPE: Optimizing Key-Value Cache Compression in Long-context Generation
Key-Value (KV) cache has become a bottleneck of LLMs for long-context generation. Despite the numerous efforts in this area, the optimization for the decoding phase is generally ignored. However, we believe such optimization is crucial, especially for long-output generation tasks based on the following two observations: (i) Excessive compression during the prefill phase, which requires specific full context impairs the comprehension of the reasoning task; (ii) Deviation of heavy hitters occurs in the reasoning tasks with long outputs. Therefore, SCOPE, a simple yet efficient framework that separately performs KV cache optimization during the prefill and decoding phases, is introduced. Specifically, the KV cache during the prefill phase is preserved to maintain the essential information, while a novel strategy based on sliding is proposed to select essential heavy hitters for the decoding phase. Memory usage and memory transfer are further optimized using adaptive and discontinuous strategies. Extensive experiments on LongGenBench show the effectiveness and generalization of SCOPE and its compatibility as a plug-in to other prefill-only KV compression methods.
KVCOMM: Online Cross-context KV-cache Communication for Efficient LLM-based Multi-agent Systems
Multi-agent large language model (LLM) systems are increasingly adopted for complex language processing tasks that require communication and coordination among agents. However, these systems often suffer substantial overhead from repeated reprocessing of overlapping contexts across agents. In typical pipelines, once an agent receives a message from its predecessor, the full context-including prior turns-must be reprocessed from scratch, leading to inefficient processing. While key-value (KV) caching is an effective solution for avoiding redundant computation in single-agent settings where prefixes remain unchanged, it cannot be directly reused in multi-agent scenarios due to diverging prefixes introduced by agent-specific context extensions. We identify that the core challenge lies in the offset variance of KV-caches across agents. To address this, we propose KVCOMM, a training-free framework that enables efficient prefilling in multi-agent inference by reusing KV-caches and aligning cache offsets of overlapping contexts under diverse prefix contexts. KVCOMM estimates and adjusts KV-caches for shared content by referencing a pool of cached examples-termed anchors-that store observed cache deviations under varying prefixes. The anchor pool is maintained and updated online, allowing dynamic adaptation to distinct user requests and context structures. KVCOMM achieves over 70% reuse rate across diverse multi-agent workloads, including retrieval-augmented generation, math reasoning, and collaborative coding tasks, all without quality degradation. Particularly, when each fully-connected agent receives 1K input tokens with 512 prefix tokens and 512 output tokens under a five-agent setting, KVCOMM achieves up to 7.8x speedup compared to the standard prefill pipeline, reducing TTFT from ~430 ms to ~55 ms.
RAGCache: Efficient Knowledge Caching for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has shown significant improvements in various natural language processing tasks by integrating the strengths of large language models (LLMs) and external knowledge databases. However, RAG introduces long sequence generation and leads to high computation and memory costs. We propose RAGCache, a novel multilevel dynamic caching system tailored for RAG. Our analysis benchmarks current RAG systems, pinpointing the performance bottleneck (i.e., long sequence due to knowledge injection) and optimization opportunities (i.e., caching knowledge's intermediate states). Based on these insights, we design RAGCache, which organizes the intermediate states of retrieved knowledge in a knowledge tree and caches them in the GPU and host memory hierarchy. RAGCache proposes a replacement policy that is aware of LLM inference characteristics and RAG retrieval patterns. It also dynamically overlaps the retrieval and inference steps to minimize the end-to-end latency. We implement RAGCache and evaluate it on vLLM, a state-of-the-art LLM inference system and Faiss, a state-of-the-art vector database. The experimental results show that RAGCache reduces the time to first token (TTFT) by up to 4x and improves the throughput by up to 2.1x compared to vLLM integrated with Faiss.
DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming Heads
Deploying long-context large language models (LLMs) is essential but poses significant computational and memory challenges. Caching all Key and Value (KV) states across all attention heads consumes substantial memory. Existing KV cache pruning methods either damage the long-context capabilities of LLMs or offer only limited efficiency improvements. In this paper, we identify that only a fraction of attention heads, a.k.a, Retrieval Heads, are critical for processing long contexts and require full attention across all tokens. In contrast, all other heads, which primarily focus on recent tokens and attention sinks--referred to as Streaming Heads--do not require full attention. Based on this insight, we introduce DuoAttention, a framework that only applies a full KV cache to retrieval heads while using a light-weight, constant-length KV cache for streaming heads, which reduces both LLM's decoding and pre-filling memory and latency without compromising its long-context abilities. DuoAttention uses a lightweight, optimization-based algorithm with synthetic data to identify retrieval heads accurately. Our method significantly reduces long-context inference memory by up to 2.55x for MHA and 1.67x for GQA models while speeding up decoding by up to 2.18x and 1.50x and accelerating pre-filling by up to 1.73x and 1.63x for MHA and GQA models, respectively, with minimal accuracy loss compared to full attention. Notably, combined with quantization, DuoAttention enables Llama-3-8B decoding with 3.3 million context length on a single A100 GPU. Code is provided in https://github.com/mit-han-lab/duo-attention.
CAOTE: KV Caching through Attention Output Error based Token Eviction
While long context support of large language models has extended their abilities, it also incurs challenges in memory and compute which becomes crucial bottlenecks in resource-restricted devices. Token eviction, a widely adopted post-training methodology designed to alleviate the bottlenecks by evicting less important tokens from the cache, typically uses attention scores as proxy metrics for token importance. However, one major limitation of attention score as a token-wise importance metrics is that it lacks the information about contribution of tokens to the attention output. In this paper, we propose a simple eviction criterion based on the contribution of cached tokens to attention outputs. Our method, CAOTE, optimizes for eviction error due to token eviction, by seamlessly integrating attention scores and value vectors. This is the first method which uses value vector information on top of attention-based eviction scores. Additionally, CAOTE can act as a meta-heuristic method with flexible usage with any token eviction method. We show that CAOTE, when combined with the state-of-the-art attention score-based methods, always improves accuracies on the downstream task, indicating the importance of leveraging information from values during token eviction process.
Sparse-dLLM: Accelerating Diffusion LLMs with Dynamic Cache Eviction
Diffusion Large Language Models (dLLMs) enable breakthroughs in reasoning and parallel decoding but suffer from prohibitive quadratic computational complexity and memory overhead during inference. Current caching techniques accelerate decoding by storing full-layer states, yet impose substantial memory usage that limit long-context applications. Our analysis of attention patterns in dLLMs reveals persistent cross-layer sparsity, with pivotal tokens remaining salient across decoding steps and low-relevance tokens staying unimportant, motivating selective cache eviction. We propose Sparse-dLLM, the first training-free framework integrating dynamic cache eviction with sparse attention via delayed bidirectional sparse caching. By leveraging the stability of token saliency over steps, it retains critical tokens and dynamically evicts unimportant prefix/suffix entries using an attention-guided strategy. Extensive experiments on LLaDA and Dream series demonstrate Sparse-dLLM achieves up to 10times higher throughput than vanilla dLLMs, with comparable performance and similar peak memory costs, outperforming previous methods in efficiency and effectiveness.
Adaptive Caching for Faster Video Generation with Diffusion Transformers
Generating temporally-consistent high-fidelity videos can be computationally expensive, especially over longer temporal spans. More-recent Diffusion Transformers (DiTs) -- despite making significant headway in this context -- have only heightened such challenges as they rely on larger models and heavier attention mechanisms, resulting in slower inference speeds. In this paper, we introduce a training-free method to accelerate video DiTs, termed Adaptive Caching (AdaCache), which is motivated by the fact that "not all videos are created equal": meaning, some videos require fewer denoising steps to attain a reasonable quality than others. Building on this, we not only cache computations through the diffusion process, but also devise a caching schedule tailored to each video generation, maximizing the quality-latency trade-off. We further introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, essentially controlling the compute allocation based on motion content. Altogether, our plug-and-play contributions grant significant inference speedups (e.g. up to 4.7x on Open-Sora 720p - 2s video generation) without sacrificing the generation quality, across multiple video DiT baselines.
FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation
While large language models (LLMs) excel at handling long-context sequences, they require substantial key-value (KV) caches to store contextual information, which can heavily burden computational efficiency and memory usage. Previous efforts to compress these KV caches primarily focused on reducing memory demands but were limited in enhancing latency. To address this issue, we introduce FastKV, a KV cache compression method designed to enhance latency for long-context sequences. To enhance processing speeds while maintaining accuracy, FastKV adopts a novel Token-Selective Propagation (TSP) approach that retains the full context information in the initial layers of LLMs and selectively propagates only a portion of this information in deeper layers even in the prefill stage. Additionally, FastKV incorporates grouped-query attention (GQA)-aware KV cache compression to exploit the advantages of GQA in both memory and computational efficiency. Our experimental results show that FastKV achieves 2.00times and 1.40times improvements in time-to-first-token (TTFT) and throughput, respectively, compared to HeadKV, the state-of-the-art KV cache compression method. Moreover, FastKV successfully maintains accuracy on long-context benchmarks at levels comparable to the baselines. Our code is available at https://github.com/dongwonjo/FastKV.
CompressKV: Semantic Retrieval Heads Know What Tokens are Not Important Before Generation
Recent advances in large language models (LLMs) have significantly boosted long-context processing. However, the increasing key-value (KV) cache size poses critical challenges to memory and execution efficiency. Most KV cache compression methods rely on heuristic token eviction using all attention heads in Grouped Query Attention (GQA)-based LLMs. This method ignores the different functionalities of attention heads, leading to the eviction of critical tokens and thus degrades the performance of LLMs. To address the issue above, instead of using all the attention heads in GQA-based LLMs to determine important tokens as in the previous work, we first identify the attention heads in each layer that are not only capable of retrieving the initial and final tokens of a prompt, but also capable of retrieving important tokens within the text and attending to their surrounding semantic context. Afterwards, we exploit such heads to determine the important tokens and retain their corresponding KV cache pairs. Furthermore, we analyze the cache eviction error of each layer individually and introduce a layer-adaptive KV cache allocation strategy. Experimental results demonstrate the proposed CompressKV consistently outperforms state-of-the-art approaches under various memory budgets on LongBench and Needle-in-a-Haystack benchmarks. Our code is publicly available at: https://github.com/TUDa-HWAI/CompressKV.git.
No Token Left Behind: Reliable KV Cache Compression via Importance-Aware Mixed Precision Quantization
Key-Value (KV) Caching has become an essential technique for accelerating the inference speed and throughput of generative Large Language Models~(LLMs). However, the memory footprint of the KV cache poses a critical bottleneck in LLM deployment as the cache size grows with batch size and sequence length, often surpassing even the size of the model itself. Although recent methods were proposed to select and evict unimportant KV pairs from the cache to reduce memory consumption, the potential ramifications of eviction on the generative process are yet to be thoroughly examined. In this paper, we examine the detrimental impact of cache eviction and observe that unforeseen risks arise as the information contained in the KV pairs is exhaustively discarded, resulting in safety breaches, hallucinations, and context loss. Surprisingly, we find that preserving even a small amount of information contained in the evicted KV pairs via reduced precision quantization substantially recovers the incurred degradation. On the other hand, we observe that the important KV pairs must be kept at a relatively higher precision to safeguard the generation quality. Motivated by these observations, we propose Mixed-precision KV cache~(MiKV), a reliable cache compression method that simultaneously preserves the context details by retaining the evicted KV pairs in low-precision and ensure generation quality by keeping the important KV pairs in high-precision. Experiments on diverse benchmarks and LLM backbones show that our proposed method offers a state-of-the-art trade-off between compression ratio and performance, compared to other baselines.
RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval
Transformer-based large Language Models (LLMs) become increasingly important in various domains. However, the quadratic time complexity of attention operation poses a significant challenge for scaling to longer contexts due to the extremely high inference latency and GPU memory consumption for caching key-value (KV) vectors. This paper proposes RetrievalAttention, a training-free approach to accelerate attention computation. To leverage the dynamic sparse property of attention, RetrievalAttention builds approximate nearest neighbor search (ANNS) indexes upon KV vectors in CPU memory and retrieves the most relevant ones via vector search during generation. Due to the out-of-distribution (OOD) between query vectors and key vectors, off-the-shelf ANNS indexes still need to scan O(N) (usually 30% of all keys) data for accurate retrieval, which fails to exploit the high sparsity. RetrievalAttention first identifies the OOD challenge of ANNS-based attention, and addresses it via an attention-aware vector search algorithm that can adapt to queries and only access 1--3% of data, thus achieving a sub-linear time complexity. RetrievalAttention greatly reduces the inference cost of long-context LLM with much lower GPU memory requirements while maintaining the model accuracy. Especially, RetrievalAttention only needs 16GB GPU memory for serving 128K tokens in LLMs with 8B parameters, which is capable of generating one token in 0.188 seconds on a single NVIDIA RTX4090 (24GB).
A^2ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization
Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A^2ATS, a novel retrieval-based KV cache reduction method. A^2ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A^2ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to 2.7 times.
CacheBlend: Fast Large Language Model Serving for RAG with Cached Knowledge Fusion
Large language models (LLMs) often incorporate multiple text chunks in their inputs to provide the necessary contexts. To speed up the prefill of the long LLM inputs, one can pre-compute the KV cache of a text and re-use the KV cache when the context is reused as the prefix of another LLM input. However, the reused text chunks are not always the input prefix, and when they are not, their precomputed KV caches cannot be directly used since they ignore the text's cross-attention with the preceding text in the LLM input. Thus, the benefits of reusing KV caches remain largely unrealized. This paper tackles just one question: when an LLM input contains multiple text chunks, how to quickly combine their precomputed KV caches in order to achieve the same generation quality as the expensive full prefill (i.e., without reusing KV cache)? We present CacheBlend, a scheme that reuses the pre-computed KV caches, regardless prefix or not, and selectively recomputes the KV values of a small subset of tokens to partially update each reused KV cache. In the meantime,the small extra delay for recomputing some tokens can be pipelined with the retrieval of KV caches within the same job,allowing CacheBlend to store KV caches in slower devices with more storage capacity while retrieving them without increasing the inference delay. By comparing CacheBlend with the state-of-the-art KV cache reusing schemes on three open-source LLMs of various sizes and four popular benchmark datasets of different tasks, we show that CacheBlend reduces time-to-first-token (TTFT) by 2.2-3.3X and increases the inference throughput by 2.8-5X, compared with full KV recompute, without compromising generation quality or incurring more storage cost.
Accelerating Diffusion Language Model Inference via Efficient KV Caching and Guided Diffusion
Diffusion language models offer parallel token generation and inherent bidirectionality, promising more efficient and powerful sequence modeling compared to autoregressive approaches. However, state-of-the-art diffusion models (e.g., Dream 7B, LLaDA 8B) suffer from slow inference. While they match the quality of similarly sized Autoregressive (AR) Models (e.g., Qwen2.5 7B, Llama3 8B), their iterative denoising requires multiple full-sequence forward passes, resulting in high computational costs and latency, particularly for long input prompts and long-context scenarios. Furthermore, parallel token generation introduces token incoherence problems, and current sampling heuristics suffer from significant quality drops with decreasing denoising steps. We address these limitations with two training-free techniques. First, we propose FreeCache, a Key-Value (KV) approximation caching technique that reuses stable KV projections across denoising steps, effectively reducing the computational cost of DLM inference. Second, we introduce Guided Diffusion, a training-free method that uses a lightweight pretrained autoregressive model to supervise token unmasking, dramatically reducing the total number of denoising iterations without sacrificing quality. We conduct extensive evaluations on open-source reasoning benchmarks, and our combined methods deliver up to a 34x end-to-end speedup without compromising accuracy. For the first time, diffusion language models achieve a comparable and even faster latency as the widely adopted autoregressive models. Our work successfully paved the way for scaling up the diffusion language model to a broader scope of applications across different domains.
KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches
Long context capability is a crucial competency for large language models (LLMs) as it mitigates the human struggle to digest long-form texts. This capability enables complex task-solving scenarios such as book summarization, code assistance, and many more tasks that are traditionally manpower-intensive. However, transformer-based LLMs face significant challenges with long context input due to the growing size of the KV cache and the intrinsic complexity of attending to extended inputs; where multiple schools of efficiency-driven approaches -- such as KV cache quantization, token dropping, prompt compression, linear-time sequence models, and hybrid architectures -- have been proposed to produce efficient yet long context-capable models. Despite these advancements, no existing work has comprehensively benchmarked these methods in a reasonably aligned environment. In this work, we fill this gap by providing a taxonomy of current methods and evaluating 10+ state-of-the-art approaches across seven categories of long context tasks. Our work reveals numerous previously unknown phenomena and offers insights -- as well as a friendly workbench -- for the future development of long context-capable LLMs. The source code will be available at https://github.com/henryzhongsc/longctx_bench
Inference-Friendly Models With MixAttention
The size of the key-value (KV) cache plays a critical role in determining both the maximum context length and the number of concurrent requests supported during inference in modern language models. The KV cache size grows proportionally with the number of attention heads and the tokens processed, leading to increased memory consumption and slower inference for long inputs. In this work, we explore the use of MixAttention, a model architecture modification closely related to a blog published by Character.AI. MixAttention combines sliding window attention, where only a small subset of recent tokens is stored in the KV cache, with KV cache sharing across layers. Our experiments demonstrate that MixAttention significantly reduces memory usage and improves inference speed without sacrificing model performance in both short and long-context tasks. We also explore various configurations of this architecture, identifying those that maintain quality across evaluation metrics while optimizing resource efficiency.
Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding
We present a comprehensive framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning. This approach significantly improves large language models on knowledge-intensive tasks, including opendomain question answering and complex reasoning. Our framework integrates two complementary techniques: Policy-Optimized RetrievalAugmented Generation (PORAG), which optimizes the use of retrieved information, and Adaptive Token-Layer Attention Scoring (ATLAS), which dynamically determines retrieval timing and content based on contextual needs. Together, these techniques enhance both the utilization and relevance of retrieved content, improving factual accuracy and response quality. Designed as a lightweight solution compatible with any Transformer-based LLM without requiring additional training, our framework excels in knowledge-intensive tasks, boosting output accuracy in RAG settings. We further propose CRITIC, a novel method to selectively compress key-value caches by token importance, mitigating memory bottlenecks in long-context applications. The framework also incorporates test-time scaling techniques to dynamically balance reasoning depth and computational resources, alongside optimized decoding strategies for faster inference. Experiments on benchmark datasets show that our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems. This integrated approach advances the development of robust, efficient, and scalable RAG systems across diverse applications.
What Limits Agentic Systems Efficiency?
Large Language Models (LLMs), such as OpenAI-o1 and DeepSeek-R1, have demonstrated strong reasoning capabilities. To further enhance LLM capabilities, recent agentic systems, such as Deep Research, incorporate web interactions into LLM reasoning to mitigate uncertainties and reduce potential errors. However, existing research predominantly focuses on reasoning performance, often neglecting the efficiency of agentic systems. In this work, we present a comprehensive empirical study that identifies efficiency bottlenecks in web-interactive agentic systems. We decompose end-to-end latency into two primary components: LLM API latency and web environment latency. We conduct a comprehensive empirical study across 15 models and 5 providers to demonstrate high variability in API-based agentic systems. We observe that web environment latency can contribute as much as 53.7% to the overall latency in a web-based agentic system. To improve latency, we propose SpecCache, a caching framework augmented with speculative execution that can reduce web environment overhead. Extensive evaluations on two standard benchmarks show that our approach improves the cache hit rate by up to 58x compared to a random caching strategy, while reducing web environment overhead by up to 3.2x, without degrading agentic system performance.
Retrospective Sparse Attention for Efficient Long-Context Generation
Large Language Models (LLMs) are increasingly deployed in long-context tasks such as reasoning, code generation, and multi-turn dialogue. However, inference over extended contexts is bottlenecked by the Key-Value (KV) cache, whose memory footprint grows linearly with sequence length and dominates latency at each decoding step. While recent KV cache compression methods identify and load important tokens, they focus predominantly on input contexts and fail to address the cumulative attention errors that arise during long decoding. In this paper, we introduce RetroAttention, a novel KV cache update technique that retrospectively revises past attention outputs using newly arrived KV entries from subsequent decoding steps. By maintaining a lightweight output cache, RetroAttention enables past queries to efficiently access more relevant context, while incurring minimal latency overhead. This breaks the fixed-attention-output paradigm and allows continual correction of prior approximations. Extensive experiments on long-generation benchmarks show that RetroAttention consistently outperforms state-of-the-art (SOTA) KV compression methods, increasing effective KV exposure by up to 1.6times and accuracy by up to 21.9\%.
Efficient Long-Context LLM Inference via KV Cache Clustering
Large language models (LLMs) with extended context windows have become increasingly prevalent for tackling complex tasks. However, the substantial Key-Value (KV) cache required for long-context LLMs poses significant deployment challenges. Existing approaches either discard potentially critical information needed for future generations or offer limited efficiency gains due to high computational overhead. In this paper, we introduce Chelsea, a simple yet effective framework for online KV cache clustering. Our approach is based on the observation that key states exhibit high similarity along the sequence dimension. To enable efficient clustering, we divide the sequence into chunks and propose Chunked Soft Matching, which employs an alternating partition strategy within each chunk and identifies clusters based on similarity. Chelsea then merges the KV cache within each cluster into a single centroid. Additionally, we provide a theoretical analysis of the computational complexity and the optimality of the intra-chunk partitioning strategy. Extensive experiments across various models and long-context benchmarks demonstrate that Chelsea achieves up to 80% reduction in KV cache memory usage while maintaining comparable model performance. Moreover, with minimal computational overhead, Chelsea accelerates the decoding stage of inference by up to 3.19times and reduces end-to-end latency by up to 2.72times.
QAQ: Quality Adaptive Quantization for LLM KV Cache
The emergence of LLMs has ignited a fresh surge of breakthroughs in NLP applications, particularly in domains such as question-answering systems and text generation. As the need for longer context grows, a significant bottleneck in model deployment emerges due to the linear expansion of the Key-Value (KV) cache with the context length. Existing methods primarily rely on various hypotheses, such as sorting the KV cache based on attention scores for replacement or eviction, to compress the KV cache and improve model throughput. However, heuristics used by these strategies may wrongly evict essential KV cache, which can significantly degrade model performance. In this paper, we propose QAQ, a Quality Adaptive Quantization scheme for the KV cache. We theoretically demonstrate that key cache and value cache exhibit distinct sensitivities to quantization, leading to the formulation of separate quantization strategies for their non-uniform quantization. Through the integration of dedicated outlier handling, as well as an improved attention-aware approach, QAQ achieves up to 10x the compression ratio of the KV cache size with a neglectable impact on model performance. QAQ significantly reduces the practical hurdles of deploying LLMs, opening up new possibilities for longer-context applications. The code is available at github.com/ClubieDong/KVCacheQuantization.
KVShare: An LLM Service System with Efficient and Effective Multi-Tenant KV Cache Reuse
Recent advances in long-text understanding have pushed the context length of large language models (LLMs) up to one million tokens. It boosts LLMs's accuracy and reasoning capacity but causes exorbitant computational costs and unsatisfactory Time to First Token (TTFT). KV cache reuse, which reuses the exact same KV cache of prefixes and templates or shares similar ones but with extra selective recomputation, offers a promising way to tackle this issue. However, prior studies overlook the cross-request KV reuse and the attention deviations introduced by new tokens during the decoding stage. In this paper, we present a KV cache management module that shares the KV cache across requests under multi-tenant scenarios without sacrificing model accuracy. Our system, KVShare, enables accurate and efficient LLM serving by 1) a Dual-Stage High Deviation algorithm (DHD) that conditionally selects a small portion of KV cache to be recomputed during both prefill and decode phases, and 2) a cache-aware scheduler that prioritizes requests based on their KV cache hit rates and orchestrates continuous batching to achieve enhanced system efficiency and faster TTFT. Multi-task experiments conducted on models such as Qwen2.5-7B,Llama3.1-8B and Yi1.5-9B demonstrate that KVShare reduces TTFT by up to 9.39x and increases 1.2x of the throughput compared to the full KV recompute. Moreover, KVShare achieves 20.38% boost in terms of accuracy compared to SOTA methods.
Context as Memory: Scene-Consistent Interactive Long Video Generation with Memory Retrieval
Recent advances in interactive video generation have shown promising results, yet existing approaches struggle with scene-consistent memory capabilities in long video generation due to limited use of historical context. In this work, we propose Context-as-Memory, which utilizes historical context as memory for video generation. It includes two simple yet effective designs: (1) storing context in frame format without additional post-processing; (2) conditioning by concatenating context and frames to be predicted along the frame dimension at the input, requiring no external control modules. Furthermore, considering the enormous computational overhead of incorporating all historical context, we propose the Memory Retrieval module to select truly relevant context frames by determining FOV (Field of View) overlap between camera poses, which significantly reduces the number of candidate frames without substantial information loss. Experiments demonstrate that Context-as-Memory achieves superior memory capabilities in interactive long video generation compared to SOTAs, even generalizing effectively to open-domain scenarios not seen during training. The link of our project page is https://context-as-memory.github.io/.
A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion
Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications.
Long-Context Inference with Retrieval-Augmented Speculative Decoding
The emergence of long-context large language models (LLMs) offers a promising alternative to traditional retrieval-augmented generation (RAG) for processing extensive documents. However, the computational overhead of long-context inference, particularly in managing key-value (KV) caches, presents significant efficiency challenges. While Speculative Decoding (SD) traditionally accelerates inference using smaller draft models, its effectiveness diminishes substantially in long-context scenarios due to memory-bound KV cache operations. We present Retrieval-Augmented Speculative Decoding (RAPID), which leverages RAG for both accelerating and enhancing generation quality in long-context inference. RAPID introduces the RAG drafter-a draft LLM operating on shortened retrieval contexts-to speculate on the generation of long-context target LLMs. Our approach enables a new paradigm where same-scale or even larger LLMs can serve as RAG drafters while maintaining computational efficiency. To fully leverage the potentially superior capabilities from stronger RAG drafters, we develop an inference-time knowledge transfer dynamic that enriches the target distribution by RAG. Extensive experiments on the LLaMA-3.1 and Qwen2.5 backbones demonstrate that RAPID effectively integrates the strengths of both approaches, achieving significant performance improvements (e.g., from 39.33 to 42.83 on InfiniteBench for LLaMA-3.1-8B) with more than 2x speedups. Our analyses reveal that RAPID achieves robust acceleration beyond 32K context length and demonstrates superior generation quality in real-world applications.
D2O: Dynamic Discriminative Operations for Efficient Generative Inference of Large Language Models
Efficient inference in Large Language Models (LLMs) is impeded by the growing memory demands of key-value (KV) caching, especially for longer sequences. Traditional KV cache eviction strategies, which prioritize less critical KV-pairs based on attention scores, often degrade generation quality, leading to issues such as context loss or hallucinations. To address this, we introduce Dynamic Discriminative Operations (D2O), a novel method that utilizes two-level discriminative strategies to optimize KV cache size without fine-tuning, while preserving essential context. Initially, by observing varying densities of attention weights between shallow and deep layers, we use this insight to determine which layers should avoid excessive eviction to minimize information loss. Subsequently, for the eviction strategy in each layer, D2O innovatively incorporates a compensation mechanism that maintains a similarity threshold to re-discriminate the importance of previously discarded tokens, determining whether they should be recalled and merged with similar tokens. Our approach not only achieves significant memory savings and enhances inference throughput by more than 3 times but also maintains high-quality long-text generation. Extensive experiments across various benchmarks and LLM architectures have demonstrated that D2O significantly enhances performance with a constrained KV cache budget.
A Survey of Context Engineering for Large Language Models
The performance of Large Language Models (LLMs) is fundamentally determined by the contextual information provided during inference. This survey introduces Context Engineering, a formal discipline that transcends simple prompt design to encompass the systematic optimization of information payloads for LLMs. We present a comprehensive taxonomy decomposing Context Engineering into its foundational components and the sophisticated implementations that integrate them into intelligent systems. We first examine the foundational components: context retrieval and generation, context processing and context management. We then explore how these components are architecturally integrated to create sophisticated system implementations: retrieval-augmented generation (RAG), memory systems and tool-integrated reasoning, and multi-agent systems. Through this systematic analysis of over 1300 research papers, our survey not only establishes a technical roadmap for the field but also reveals a critical research gap: a fundamental asymmetry exists between model capabilities. While current models, augmented by advanced context engineering, demonstrate remarkable proficiency in understanding complex contexts, they exhibit pronounced limitations in generating equally sophisticated, long-form outputs. Addressing this gap is a defining priority for future research. Ultimately, this survey provides a unified framework for both researchers and engineers advancing context-aware AI.
LongGenBench: Long-context Generation Benchmark
Current long-context benchmarks primarily focus on retrieval-based tests, requiring Large Language Models (LLMs) to locate specific information within extensive input contexts, such as the needle-in-a-haystack (NIAH) benchmark. Long-context generation refers to the ability of a language model to generate coherent and contextually accurate text that spans across lengthy passages or documents. While recent studies show strong performance on NIAH and other retrieval-based long-context benchmarks, there is a significant lack of benchmarks for evaluating long-context generation capabilities. To bridge this gap and offer a comprehensive assessment, we introduce a synthetic benchmark, LongGenBench, which allows for flexible configurations of customized generation context lengths. LongGenBench advances beyond traditional benchmarks by redesigning the format of questions and necessitating that LLMs respond with a single, cohesive long-context answer. Upon extensive evaluation using LongGenBench, we observe that: (1) both API accessed and open source models exhibit performance degradation in long-context generation scenarios, ranging from 1.2% to 47.1%; (2) different series of LLMs exhibit varying trends of performance degradation, with the Gemini-1.5-Flash model showing the least degradation among API accessed models, and the Qwen2 series exhibiting the least degradation in LongGenBench among open source models.
FastCache: Optimizing Multimodal LLM Serving through Lightweight KV-Cache Compression Framework
Multi-modal Large Language Models (MLLMs) serving systems commonly employ KV-cache compression to reduce memory footprint. However, existing compression methods introduce significant processing overhead and queuing delays, particularly in concurrent serving scenarios. We present FastCache, a novel serving framework that effectively addresses these challenges through two key innovations: (1) a dynamic batching strategy that optimizes request scheduling across prefill, compression, and decode stages, and (2) an efficient KV-cache memory pool mechanism that eliminates memory fragmentation while maintaining high GPU utilization. Our comprehensive experiments on the GQA and MileBench datasets demonstrate that FastCache achieves up to 19.3times reduction in Time-To-First-Token (TTFT) and 12.1times improvement in throughput compared to state-of-the-art baselines. The system maintains stable performance under high-concurrency scenarios (up to 40 req/s) while reducing average memory consumption by 20\%. These results establish FastCache as an efficient solution for real-world LLM serving systems with KV-cache compression.
On The Importance of Reasoning for Context Retrieval in Repository-Level Code Editing
Recent advancements in code-fluent Large Language Models (LLMs) enabled the research on repository-level code editing. In such tasks, the model navigates and modifies the entire codebase of a project according to request. Hence, such tasks require efficient context retrieval, i.e., navigating vast codebases to gather relevant context. Despite the recognized importance of context retrieval, existing studies tend to approach repository-level coding tasks in an end-to-end manner, rendering the impact of individual components within these complicated systems unclear. In this work, we decouple the task of context retrieval from the other components of the repository-level code editing pipelines. We lay the groundwork to define the strengths and weaknesses of this component and the role that reasoning plays in it by conducting experiments that focus solely on context retrieval. We conclude that while the reasoning helps to improve the precision of the gathered context, it still lacks the ability to identify its sufficiency. We also outline the ultimate role of the specialized tools in the process of context gathering. The code supplementing this paper is available at https://github.com/JetBrains-Research/ai-agents-code-editing.
LoCoCo: Dropping In Convolutions for Long Context Compression
This paper tackles the memory hurdle of processing long context sequences in Large Language Models (LLMs), by presenting a novel approach, Dropping In Convolutions for Long Context Compression (LoCoCo). LoCoCo employs only a fixed-size Key-Value (KV) cache, and can enhance efficiency in both inference and fine-tuning stages. Diverging from prior methods that selectively drop KV pairs based on heuristics, LoCoCo leverages a data-driven adaptive fusion technique, blending previous KV pairs with incoming tokens to minimize the loss of contextual information and ensure accurate attention modeling. This token integration is achieved through injecting one-dimensional convolutional kernels that dynamically calculate mixing weights for each KV cache slot. Designed for broad compatibility with existing LLM frameworks, LoCoCo allows for straightforward "drop-in" integration without needing architectural modifications, while incurring minimal tuning overhead. Experiments demonstrate that LoCoCo maintains consistently outstanding performance across various context lengths and can achieve a high context compression rate during both inference and fine-tuning phases. During inference, we successfully compressed up to 3482 tokens into a 128-size KV cache, while retaining comparable performance to the full sequence - an accuracy improvement of up to 0.2791 compared to baselines at the same cache size. During post-training tuning, we also effectively extended the context length from 4K to 32K using a KV cache of fixed size 512, achieving performance similar to fine-tuning with entire sequences.
Marconi: Prefix Caching for the Era of Hybrid LLMs
Hybrid models that combine the language modeling capabilities of Attention layers with the efficiency of Recurrent layers (e.g., State Space Models) have gained traction in practically supporting long contexts in Large Language Model serving. Yet, the unique properties of these models complicate the usage of complementary efficiency optimizations such as prefix caching that skip redundant computations across requests. Most notably, their use of in-place state updates for recurrent layers precludes rolling back cache entries for partial sequence overlaps, and instead mandates only exact-match cache hits; the effect is a deluge of (large) cache entries per sequence, most of which yield minimal reuse opportunities. We present Marconi, the first system that supports efficient prefix caching with Hybrid LLMs. Key to Marconi are its novel admission and eviction policies that more judiciously assess potential cache entries based not only on recency, but also on (1) forecasts of their reuse likelihood across a taxonomy of different hit scenarios, and (2) the compute savings that hits deliver relative to memory footprints. Across diverse workloads and Hybrid models, Marconi achieves up to 34.4times higher token hit rates (71.1% or 617 ms lower TTFT) compared to state-of-the-art prefix caching systems.
Cache-Craft: Managing Chunk-Caches for Efficient Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) is often used with Large Language Models (LLMs) to infuse domain knowledge or user-specific information. In RAG, given a user query, a retriever extracts chunks of relevant text from a knowledge base. These chunks are sent to an LLM as part of the input prompt. Typically, any given chunk is repeatedly retrieved across user questions. However, currently, for every question, attention-layers in LLMs fully compute the key values (KVs) repeatedly for the input chunks, as state-of-the-art methods cannot reuse KV-caches when chunks appear at arbitrary locations with arbitrary contexts. Naive reuse leads to output quality degradation. This leads to potentially redundant computations on expensive GPUs and increases latency. In this work, we propose Cache-Craft, a system for managing and reusing precomputed KVs corresponding to the text chunks (we call chunk-caches) in RAG-based systems. We present how to identify chunk-caches that are reusable, how to efficiently perform a small fraction of recomputation to fix the cache to maintain output quality, and how to efficiently store and evict chunk-caches in the hardware for maximizing reuse while masking any overheads. With real production workloads as well as synthetic datasets, we show that Cache-Craft reduces redundant computation by 51% over SOTA prefix-caching and 75% over full recomputation. Additionally, with continuous batching on a real production workload, we get a 1.6X speed up in throughput and a 2X reduction in end-to-end response latency over prefix-caching while maintaining quality, for both the LLaMA-3-8B and LLaMA-3-70B models.
InComeS: Integrating Compression and Selection Mechanisms into LLMs for Efficient Model Editing
Although existing model editing methods perform well in recalling exact edit facts, they often struggle in complex scenarios that require deeper semantic understanding rather than mere knowledge regurgitation. Leveraging the strong contextual reasoning abilities of large language models (LLMs), in-context learning (ICL) becomes a promising editing method by comprehending edit information through context encoding. However, this method is constrained by the limited context window of LLMs, leading to degraded performance and efficiency as the number of edits increases. To overcome this limitation, we propose InComeS, a flexible framework that enhances LLMs' ability to process editing contexts through explicit compression and selection mechanisms. Specifically, InComeS compresses each editing context into the key-value (KV) cache of a special gist token, enabling efficient handling of multiple edits without being restricted by the model's context window. Furthermore, specialized cross-attention modules are added to dynamically select the most relevant information from the gist pools, enabling adaptive and effective utilization of edit information. We conduct experiments on diverse model editing benchmarks with various editing formats, and the results demonstrate the effectiveness and efficiency of our method.
LagKV: Lag-Relative Information of the KV Cache Tells Which Tokens Are Important
The increasing size of the Key-Value (KV) cache during the Large Language Models long-context inference is the main obstacle for its balance between the deployment cost and task accuracy. To reduce the KV cache size in such scenarios, most previous efforts leveraged on the attention weight to evict non-critical cache tokens. But there is a trade-off in those methods, they usually require major modifiation of the inference infrastructure and significant computation overhead. Base on the fact that the Large Lanuage models are autoregresssive models, we propose {\it LagKV}, a KV allocation strategy only relying on straight forward comparison among KV themself. It is a totally attention free method which offers easy integration to the main stream inference platform and comparable performance comparing to other complicated KV compression methods. Results on LongBench and PasskeyRetrieval show that, our approach achieves nearly zero loss when the ratio is 2times and approx 90% of the original model performance for 8times. Especially in the 64-digit passkey retrieval task, our mehod outperforms the attention weight based method H_2O over 60% with same compression ratios. Our code is available at https://github.com/AI-Lab-China-Merchants-Bank/LagKV.
Deep Learning-based Code Completion: On the Impact on Performance of Contextual Information
Code completion aims at speeding up code writing by recommending to developers the next tokens they are likely to type. Deep Learning (DL) models pushed the boundaries of code completion by redefining what these coding assistants can do: We moved from predicting few code tokens to automatically generating entire functions. One important factor impacting the performance of DL-based code completion techniques is the context provided as input. With "context" we refer to what the model knows about the code to complete. In a simple scenario, the DL model might be fed with a partially implemented function to complete. In this case, the context is represented by the incomplete function and, based on it, the model must generate a prediction. It is however possible to expand such a context to include additional information, like the whole source code file containing the function to complete, which could be useful to boost the prediction performance. In this work, we present an empirical study investigating how the performance of a DL-based code completion technique is affected by different contexts. We experiment with 8 types of contexts and their combinations. These contexts include: (i) coding contexts, featuring information extracted from the code base in which the code completion is invoked (e.g., code components structurally related to the one to "complete"); (ii) process context, with information aimed at depicting the current status of the project in which a code completion task is triggered (e.g., a textual representation of open issues relevant for the code to complete); and (iii) developer contexts, capturing information about the developer invoking the code completion (e.g., the APIs frequently used). Our results show that additional contextual information can benefit the performance of DL-based code completion, with relative improvements up to +22% in terms of correct predictions.
Predicting Task Performance with Context-aware Scaling Laws
Scaling laws have transformed our understanding of large language models by linking upstream metrics like cross-entropy loss to design factors such as model size, training data, and compute. However, these conventional laws fail to capture downstream task performance, where context plays a critical role. In this work, we propose a straightforward, interpretable framework that jointly models downstream performance as a function of the training compute and the provided context. We empirically validate our framework by fitting it on the observed downstream performance of extended-context variants of Llama-2-7B and Llama-2-13B across 65,500 unique instances spanning three tasks: arithmetic reasoning, common sense reasoning, and machine translation. Our results demonstrate that our framework accurately models in-distribution downstream performance, generalizes across three orders of magnitude in training compute, and reliably extrapolates performance as the amount of context increases. These findings offer valuable insights into the interplay between training compute and context utilization, providing guidance for designing more efficient long-context LLMs for diverse downstream tasks. Our code is available at https://github.com/wang-research-lab/context-scaling.
Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.
LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences, yet efficiently serving these long-context models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks
How to efficiently serve Large Language Models (LLMs) has become a pressing issue because of their huge computational cost in their autoregressive generation process. To mitigate computational costs, LLMs often employ the KV Cache technique to improve the generation speed. While improving the computational efficiency, the storage requirements of the KV cache are substantial, particularly in long-context scenarios, leading to significant memory consumption. Existing KV cache eviction methods often degrade the performance of LLMs in long-context scenarios due to the information loss introduced by eviction. In this paper, we propose a novel KV cache merging approach, called KVMerger, to achieve adaptive KV cache compression for long-context tasks without significant performance degradation under constrained memory budgets. Our approach is inspired by the intriguing observation that key states exhibit high similarity at the token level within a single sequence. To facilitate merging, we develop an effective yet straightforward merging set identification algorithm to identify suitable KV states for merging. Our merging set identification algorithm stimulates the second observation that KV cache sparsity, from similarity perspective, is independent of the dataset and remains persistent at the model level. Subsequently, we propose a Gaussian kernel weighted merging algorithm to selectively merge all states within each merging set. We conduct extensive experiments to demonstrate the effectiveness of KVMerger for long-context tasks under constrained memory budgets, applying it to models including Llama2-7B-chat and Llama2-13B-chat. Using the LongBench and ZeroScroll benchmarks, we compare our method with other KV cache compression techniques, including H2O and CaM, showing that our method achieves superior performance across tasks with both 50% and 35% KV cache budgets.
MiniCache: KV Cache Compression in Depth Dimension for Large Language Models
A critical approach for efficiently deploying computationally demanding large language models (LLMs) is Key-Value (KV) caching. The KV cache stores key-value states of previously generated tokens, significantly reducing the need for repetitive computations and thereby lowering latency in autoregressive generation. However, the size of the KV cache grows linearly with sequence length, posing challenges for applications requiring long context input and extensive sequence generation. In this paper, we present a simple yet effective approach, called MiniCache, to compress the KV cache across layers from a novel depth perspective, significantly reducing the memory footprint for LLM inference. Our approach is based on the observation that KV cache states exhibit high similarity between the adjacent layers in the middle-to-deep portion of LLMs. To facilitate merging, we propose disentangling the states into the magnitude and direction components, interpolating the directions of the state vectors while preserving their lengths unchanged. Furthermore, we introduce a token retention strategy to keep highly distinct state pairs unmerged, thus preserving the information with minimal additional storage overhead. Our MiniCache is training-free and general, complementing existing KV cache compression strategies, such as quantization and sparsity. We conduct a comprehensive evaluation of MiniCache utilizing various models including LLaMA-2, LLaMA-3, Phi-3, Mistral, and Mixtral across multiple benchmarks, demonstrating its exceptional performance in achieving superior compression ratios and high throughput. On the ShareGPT dataset, LLaMA-2-7B with 4-bit MiniCache achieves a remarkable compression ratio of up to 5.02x, enhances inference throughput by approximately 5x, and reduces the memory footprint by 41% compared to the FP16 full cache baseline, all while maintaining near-lossless performance.
LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues
Multi-turn dialogues are essential in many real-world applications of large language models, such as chatbots and virtual assistants. As conversation histories become longer, existing large language models face increasing computational and memory challenges, which hinder their ability to provide efficient and responsive interactions. Most current acceleration methods either compress the context or optimize key value caching, but they often rely on fixed or position-based heuristics that do not adapt well to the dynamic and unpredictable patterns found in actual multi-turn conversations. In this paper, we present LoopServe, an adaptive dual-phase inference acceleration framework for large language models in multi-turn dialogues. LoopServe introduces two main innovations. First, it performs online sparsification during the prefilling phase by dynamically selecting the most important parts of the attention matrix for each new input. Second, it uses progressive key value compression during decoding by adaptively maintaining a relevant and efficient cache based on the most recently generated output tokens. We also propose a https://huggingface.co/datasets/TreeAILab/Multi-turn_Long-context_Benchmark_for_LLMs{new benchmark} with eleven multi-turn datasets that reflect realistic query positions and conversational dependencies. Extensive experiments demonstrate that LoopServe consistently achieves superior effectiveness compared to existing baselines and significantly accelerates LLM inference across a wide range of long-context dialogue tasks.
From 128K to 4M: Efficient Training of Ultra-Long Context Large Language Models
Long-context capabilities are essential for a wide range of applications, including document and video understanding, in-context learning, and inference-time scaling, all of which require models to process and reason over long sequences of text and multimodal data. In this work, we introduce a efficient training recipe for building ultra-long context LLMs from aligned instruct model, pushing the boundaries of context lengths from 128K to 1M, 2M, and 4M tokens. Our approach leverages efficient continued pretraining strategies to extend the context window and employs effective instruction tuning to maintain the instruction-following and reasoning abilities. Our UltraLong-8B, built on Llama3.1-Instruct with our recipe, achieves state-of-the-art performance across a diverse set of long-context benchmarks. Importantly, models trained with our approach maintain competitive performance on standard benchmarks, demonstrating balanced improvements for both long and short context tasks. We further provide an in-depth analysis of key design choices, highlighting the impacts of scaling strategies and data composition. Our findings establish a robust framework for efficiently scaling context lengths while preserving general model capabilities. We release all model weights at: https://ultralong.github.io/.
DroidSpeak: Enhancing Cross-LLM Communication
In multi-agent systems utilizing Large Language Models (LLMs), communication between agents traditionally relies on natural language. This communication often includes the full context of the query so far, which can introduce significant prefill-phase latency, especially with long contexts. We introduce DroidSpeak, a novel framework to target this cross-LLM communication by leveraging the reuse of intermediate data, such as input embeddings (E-cache) and key-value caches (KV-cache). We efficiently bypass the need to reprocess entire contexts for fine-tuned versions of the same foundational model. This approach allows faster context integration while maintaining the quality of task performance. Experimental evaluations demonstrate DroidSpeak's ability to significantly accelerate inter-agent communication, achieving up to a 2.78x speedup in prefill latency with negligible loss in accuracy. Our findings underscore the potential to create more efficient and scalable multi-agent systems.
WindowKV: Task-Adaptive Group-Wise KV Cache Window Selection for Efficient LLM Inference
With the advancements in long-context inference capabilities of large language models (LLMs), the KV cache has become one of the foundational components. However, its substantial GPU memory consumption makes KV cache compression a key technique for enabling efficient LLM inference in industrial scenarios. While recent studies have focused on optimizing the memory occupied by the KV cache, they overlook two critical factors: preserving semantic coherence and considering task-specific characteristic during compression. To address these limitations, we propose a novel task-adaptive KV cache window selection method, WindowKV. WindowKV dynamically selects local semantic windows consisting of consecutive tokens, according to task-specific characteristics, ensuring the retained KV cache captures continuous, essential context. Additionally, we introduce an intra-group layer KV cache indices sharing strategy to reduce computational overhead, achieving a balance between performance and efficiency. We rigorously evaluate WindowKV on the LongBench benchmark, and the results demonstrate that it maintains a performance comparable to full KV cache retention while using only 12% of the original KV cache, significantly reducing memory requirements. Furthermore, our method also achieves state-of-the-art results in the Needle-in-a-Haystack evaluation, highlighting its effectiveness and robustness.
Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference
Many computational factors limit broader deployment of large language models. In this paper, we focus on a memory bottleneck imposed by the key-value (KV) cache, a computational shortcut that requires storing previous KV pairs during decoding. While existing KV cache methods approach this problem by pruning or evicting large swaths of relatively less important KV pairs to dramatically reduce the memory footprint of the cache, they can have limited success in tasks that require recollecting a majority of previous tokens. To alleviate this issue, we propose LESS, a simple integration of a (nearly free) constant sized cache with eviction-based cache methods, such that all tokens can be queried at later decoding steps. Its ability to retain information throughout time shows merit on a variety of tasks where we demonstrate LESS can help reduce the performance gap from caching everything, sometimes even matching it, all while being efficient.
Mixture of Contexts for Long Video Generation
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.
Lag-Relative Sparse Attention In Long Context Training
Large Language Models (LLMs) have made significant strides in natural language processing and generation, yet their ability to handle long-context input remains constrained by the quadratic complexity of attention computation and linear-increasing key-value memory footprint. To reduce computational costs and memory, key-value cache compression techniques are commonly applied at inference time, but this often leads to severe performance degradation, as models are not trained to handle compressed context. Although there are more sophisticated compression methods, they are typically unsuitable for post-training because of their incompatibility with gradient-based optimization or high computation overhead. To fill this gap with no additional parameter and little computation overhead, we propose Lag-Relative Sparse Attention(LRSA) anchored by the LagKV compression method for long context post-training. Our method performs chunk-by-chunk prefilling, which selects the top K most relevant key-value pairs in a fixed-size lagging window, allowing the model to focus on salient historical context while maintaining efficiency. Experimental results show that our approach significantly enhances the robustness of the LLM with key-value compression and achieves better fine-tuned results in the question-answer tuning task.
Structured Packing in LLM Training Improves Long Context Utilization
Recent developments in long-context large language models have attracted considerable attention. Yet, their real-world applications are often hindered by ineffective context information use. This work shows that structuring training data to increase semantic interdependence is an effective strategy for optimizing context utilization. To this end, we introduce Structured Packing for Long Context (SPLiCe), a method for creating training examples by using information retrieval methods to collate mutually relevant documents into a single training context. We empirically validate SPLiCe on large 3B and 7B models, showing perplexity improvements and better long-context utilization on downstream tasks. Remarkably, already relatively short fine-tuning with SPLiCe is enough to attain these benefits. Additionally, the comprehensive study of SPLiCe reveals intriguing transfer effects such as training on code data leading to perplexity improvements on text data.
Locret: Enhancing Eviction in Long-Context LLM Inference with Trained Retaining Heads
Large language models (LLMs) have shown remarkable advances in supporting long-context comprehension and processing tasks. However, scaling the generation inference of LLMs to such long contexts incurs significant additional computation load, and demands a substantial GPU memory footprint to maintain the key-value (KV) cache of transformer-based LLMs. Existing KV cache compression methods, such as quantization, face memory bottlenecks as context length increases, while static-sized caches, such as eviction, suffer from inefficient policies. These limitations restrict deployment on consumer-grade devices like a single Nvidia 4090 GPU. To overcome this, we propose Locret, a framework for long-context LLM inference that introduces retaining heads to evaluate the causal importance of KV cache units, allowing for more accurate eviction within a fixed cache size. Locret is fine-tuned on top of the frozen backbone LLM using a minimal amount of data from standard long-context SFT datasets. During inference, we evict low-importance cache units along with a chunked prefill pattern, significantly reducing peak GPU memory usage. We conduct an extensive empirical study to evaluate Locret, where the experimental results show that Locret outperforms the recent competitive approaches, including InfLLM, Quantization, SirLLM, and MInference, in terms of memory efficiency and the quality of generated contents -- Locret achieves over a 20x and 8x KV cache compression ratio compared to the full KV cache for Phi-3-mini-128K and Llama-3.1-8B-instruct. Additionally, Locret can be combined with other methods, such as quantization and token merging. To our knowledge, Locret is the first framework capable of deploying Llama-3.1-8B or similar models on a single Nvidia 4090 GPU, enabling 128K long-context inference without compromising generation quality, and requiring little additional system optimizations.
TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection
With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
Lookahead Q-Cache: Achieving More Consistent KV Cache Eviction via Pseudo Query
Large language models (LLMs) rely on key-value cache (KV cache) to accelerate decoding by reducing redundant computations. However, the KV cache memory usage grows substantially with longer text sequences, posing challenges for efficient deployment. Existing KV cache eviction methods prune tokens using prefilling-stage attention scores, causing inconsistency with actual inference queries, especially under tight memory budgets. In this paper, we propose Lookahead Q-Cache (LAQ), a novel eviction framework that generates low-cost pseudo lookahead queries to better approximate the true decoding-stage queries. By using these lookahead queries as the observation window for importance estimation, LAQ achieves more consistent and accurate KV cache eviction aligned with real inference scenarios. Experimental results on LongBench and Needle-in-a-Haystack benchmarks show that LAQ outperforms existing methods across various budget levels, achieving a 1 sim 4 point improvement on LongBench under limited cache budget. Moreover, LAQ is complementary to existing approaches and can be flexibly combined to yield further improvements.
SentenceKV: Efficient LLM Inference via Sentence-Level Semantic KV Caching
Large language models face significant computational and memory challenges when processing long contexts. During inference, efficient management of the key-value (KV) cache, which stores intermediate activations for autoregressive generation, is critical to reducing memory overhead and improving computational efficiency. Traditional token-level efficient KV caching methods overlook semantic information, treating tokens independently without considering their semantic relationships. Meanwhile, existing semantic-preserving KV cache management approaches often suffer from substantial memory usage and high time-to-first-token. To address these limitations, we propose SentenceKV, a novel sentence-level semantic KV caching approach designed to enhance inference efficiency while preserving semantic coherence. During prefilling, SentenceKV groups tokens based on sentence-level semantic similarity, compressing sentence representations into concise semantic vectors stored directly on the GPU, while individual KV pairs are offloaded to CPU. During decoding, SentenceKV generates tokens by selectively retrieving semantically relevant sentence-level KV entries, leveraging the semantic similarity between the prefilling-stage semantic vectors and decoding-stage queries. This ensures efficient and contextually accurate predictions, minimizing the loading of redundant or irrelevant data into GPU memory and significantly reducing memory overhead while maintaining stable inference latency, even for extremely long contexts. Extensive evaluations on benchmarks including PG-19, LongBench, and Needle-In-A-Haystack demonstrate that SentenceKV significantly outperforms state-of-the-art methods in both efficiency and memory usage, without compromising model accuracy.
Compressing KV Cache for Long-Context LLM Inference with Inter-Layer Attention Similarity
The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularly regarding memory and computational complexity. Existing methods, including selective token retention and window-based attention, improve efficiency but risk discarding important tokens needed for future text generation. In this paper, we propose an approach that enhances LLM efficiency without token loss by reducing the memory and computational load of less important tokens, rather than discarding them.We address two challenges: 1) investigating the distribution of important tokens in the context, discovering recent tokens are more important than distant tokens in context, and 2) optimizing resources for distant tokens by sharing attention scores across layers. The experiments show that our method saves 35% KV cache without compromising the performance.
ILRe: Intermediate Layer Retrieval for Context Compression in Causal Language Models
Large Language Models (LLMs) have demonstrated success across many benchmarks. However, they still exhibit limitations in long-context scenarios, primarily due to their short effective context length, quadratic computational complexity, and high memory overhead when processing lengthy inputs. To mitigate these issues, we introduce a novel context compression pipeline, called Intermediate Layer Retrieval (ILRe), which determines one intermediate decoder layer offline, encodes context by streaming chunked prefill only up to that layer, and recalls tokens by the attention scores between the input query and full key cache in that specified layer. In particular, we propose a multi-pooling kernels allocating strategy in the token recalling process to maintain the completeness of semantics. Our approach not only reduces the prefilling complexity from O(L^2) to O(L), but also achieves performance comparable to or better than the full context in the long context scenarios. Without additional post training or operator development, ILRe can process a single 1M tokens request in less than half a minute (speedup approx 180times) and scores RULER-1M benchmark of approx 79.8 with model Llama-3.1-UltraLong-8B-1M-Instruct on a Huawei Ascend 910B NPU.
On Optimal Caching and Model Multiplexing for Large Model Inference
Large Language Models (LLMs) and other large foundation models have achieved noteworthy success, but their size exacerbates existing resource consumption and latency challenges. In particular, the large-scale deployment of these models is hindered by the significant resource requirements during inference. In this paper, we study two approaches for mitigating these challenges: employing a cache to store previous queries and learning a model multiplexer to choose from an ensemble of models for query processing. Theoretically, we provide an optimal algorithm for jointly optimizing both approaches to reduce the inference cost in both offline and online tabular settings. By combining a caching algorithm, namely Greedy Dual Size with Frequency (GDSF) or Least Expected Cost (LEC), with a model multiplexer, we achieve optimal rates in both offline and online settings. Empirically, simulations show that the combination of our caching and model multiplexing algorithms greatly improves over the baselines, with up to 50times improvement over the baseline when the ratio between the maximum cost and minimum cost is 100. Experiments on real datasets show a 4.3times improvement in FLOPs over the baseline when the ratio for FLOPs is 10, and a 1.8times improvement in latency when the ratio for average latency is 1.85.
PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation
Recently, large vision-language models (LVLMs) have rapidly gained popularity for their strong generation and reasoning capabilities given diverse multimodal inputs. However, these models incur significant computational and memory overhead during inference, which greatly hinders the efficient deployment in practical scenarios. The extensive key-value (KV) cache, necessitated by the lengthy input and output sequences, notably contributes to the high inference cost. Based on this, recent works have investigated ways to reduce the KV cache size for higher efficiency. Although effective, they generally overlook the distinct importance distributions of KV vectors across layers and maintain the same cache size for each layer during the next token prediction. This results in the significant contextual information loss for certain layers, leading to notable performance decline. To address this, we present PrefixKV. It reframes the challenge of determining KV cache sizes for all layers into the task of searching for the optimal global prefix configuration. With an adaptive layer-wise KV retention recipe based on binary search, the maximum contextual information can thus be preserved in each layer, facilitating the generation. Extensive experiments demonstrate that our method achieves the state-of-the-art performance compared with others. It exhibits superior inference efficiency and generation quality trade-offs, showing promising potential for practical applications. Code is available at https://github.com/THU-MIG/PrefixKV.
ERTACache: Error Rectification and Timesteps Adjustment for Efficient Diffusion
Diffusion models suffer from substantial computational overhead due to their inherently iterative inference process. While feature caching offers a promising acceleration strategy by reusing intermediate outputs across timesteps, naive reuse often incurs noticeable quality degradation. In this work, we formally analyze the cumulative error introduced by caching and decompose it into two principal components: feature shift error, caused by inaccuracies in cached outputs, and step amplification error, which arises from error propagation under fixed timestep schedules. To address these issues, we propose ERTACache, a principled caching framework that jointly rectifies both error types. Our method employs an offline residual profiling stage to identify reusable steps, dynamically adjusts integration intervals via a trajectory-aware correction coefficient, and analytically approximates cache-induced errors through a closed-form residual linearization model. Together, these components enable accurate and efficient sampling under aggressive cache reuse. Extensive experiments across standard image and video generation benchmarks show that ERTACache achieves up to 2x inference speedup while consistently preserving or even improving visual quality. Notably, on the state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2x acceleration with minimal VBench degradation, effectively maintaining baseline fidelity while significantly improving efficiency. The code is available at https://github.com/bytedance/ERTACache.
Understanding and Leveraging the Expert Specialization of Context Faithfulness in Mixture-of-Experts LLMs
Context faithfulness is essential for reliable reasoning in context-dependent scenarios. However, large language models often struggle to ground their outputs in the provided context, resulting in irrelevant responses. Inspired by the emergent expert specialization observed in mixture-of-experts architectures, this work investigates whether certain experts exhibit specialization in context utilization, offering a potential pathway toward targeted optimization for improved context faithfulness. To explore this, we propose Router Lens, a method that accurately identifies context-faithful experts. Our analysis reveals that these experts progressively amplify attention to relevant contextual information, thereby enhancing context grounding. Building on this insight, we introduce Context-faithful Expert Fine-Tuning (CEFT), a lightweight optimization approach that selectively fine-tunes context-faithful experts. Experiments across a wide range of benchmarks and models demonstrate that CEFT matches or surpasses the performance of full fine-tuning while being significantly more efficient.
KVCompose: Efficient Structured KV Cache Compression with Composite Tokens
Large language models (LLMs) rely on key-value (KV) caches for efficient autoregressive decoding; however, cache size grows linearly with context length and model depth, becoming a major bottleneck in long-context inference. Prior KV cache compression methods either enforce rigid heuristics, disrupt tensor layouts with per-attention-head variability, or require specialized compute kernels. We propose a simple, yet effective, KV cache compression framework based on attention-guided, layer-adaptive composite tokens. Our method aggregates attention scores to estimate token importance, selects head-specific tokens independently, and aligns them into composite tokens that respect the uniform cache structure required by existing inference engines. A global allocation mechanism further adapts retention budgets across layers, assigning more capacity to layers with informative tokens. This approach achieves significant memory reduction while preserving accuracy, consistently outperforming prior structured and semi-structured methods. Crucially, our approach remains fully compatible with standard inference pipelines, offering a practical and scalable solution for efficient long-context LLM deployment.
Is In-Context Learning Sufficient for Instruction Following in LLMs?
In-context learning (ICL) allows LLMs to learn from examples without changing their weights, which is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on established benchmarks such as MT-Bench and AlpacaEval 2.0 (LC), especially with more capable base LMs. Unlike for tasks such as classification, translation, or summarization, adding more ICL demonstrations for long-context LLMs does not systematically improve instruction following performance. To address this limitation, we derive a greedy selection approach for ICL examples that noticeably improves performance, yet without bridging the gap to instruction fine-tuning. Finally, we provide a series of ablation studies to better understand the reasons behind the remaining gap, and we show how some aspects of ICL depart from the existing knowledge and are specific to the instruction tuning setting. Overall, our work advances the understanding of ICL as an alignment technique. We provide our code at https://github.com/tml-epfl/icl-alignment.
Context Embeddings for Efficient Answer Generation in RAG
Retrieval-Augmented Generation (RAG) allows overcoming the limited knowledge of LLMs by extending the input with external information. As a consequence, the contextual inputs to the model become much longer which slows down decoding time directly translating to the time a user has to wait for an answer. We address this challenge by presenting COCOM, an effective context compression method, reducing long contexts to only a handful of Context Embeddings speeding up the generation time by a large margin. Our method allows for different compression rates trading off decoding time for answer quality. Compared to earlier methods, COCOM allows for handling multiple contexts more effectively, significantly reducing decoding time for long inputs. Our method demonstrates a speed-up of up to 5.69 times while achieving higher performance compared to existing efficient context compression methods.
Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models
Efficient real-world deployments of large language models (LLMs) rely on Key-Value (KV) caching for processing and generating long outputs, reducing the need for repetitive computation. For large contexts, Key-Value caches can take up tens of gigabytes of device memory, as they store vector representations for each token and layer. Recent work has shown that the cached vectors can be compressed through quantization, pruning or merging, but these techniques often compromise quality towards higher compression rates. In this work, we aim to improve Key & Value compression by exploiting two observations: 1) the inherent dependencies between keys and values across different layers, and 2) high-compression mechanisms for internal network states. We propose AQUA-KV, an adaptive quantization for Key-Value caches that relies on compact adapters to exploit existing dependencies between Keys and Values, and aims to "optimally" compress the information that cannot be predicted. AQUA-KV significantly improves compression rates, while maintaining high accuracy on state-of-the-art LLM families. On Llama 3.2 LLMs, we achieve near-lossless inference at 2-2.5 bits per value with under 1% relative error in perplexity and LongBench scores. AQUA-KV is one-shot, simple, and efficient: it can be calibrated on a single GPU within 1-6 hours, even for 70B models.
Efficient Memory Management for Large Language Model Serving with PagedAttention
High throughput serving of large language models (LLMs) requires batching sufficiently many requests at a time. However, existing systems struggle because the key-value cache (KV cache) memory for each request is huge and grows and shrinks dynamically. When managed inefficiently, this memory can be significantly wasted by fragmentation and redundant duplication, limiting the batch size. To address this problem, we propose PagedAttention, an attention algorithm inspired by the classical virtual memory and paging techniques in operating systems. On top of it, we build vLLM, an LLM serving system that achieves (1) near-zero waste in KV cache memory and (2) flexible sharing of KV cache within and across requests to further reduce memory usage. Our evaluations show that vLLM improves the throughput of popular LLMs by 2-4times with the same level of latency compared to the state-of-the-art systems, such as FasterTransformer and Orca. The improvement is more pronounced with longer sequences, larger models, and more complex decoding algorithms. vLLM's source code is publicly available at https://github.com/vllm-project/vllm
LongSpec: Long-Context Lossless Speculative Decoding with Efficient Drafting and Verification
As Large Language Models (LLMs) can now process extremely long contexts, efficient inference over these extended inputs has become increasingly important, especially for emerging applications like LLM agents that highly depend on this capability. Speculative decoding (SD) offers a promising lossless acceleration technique compared to lossy alternatives such as quantization and model cascades. However, most state-of-the-art SD methods are trained on short texts (typically fewer than 4k tokens), making them unsuitable for long-context scenarios. Specifically, adapting these methods to long contexts presents three key challenges: (1) the excessive memory demands posed by draft models due to large Key-Value (KV) cache; (2) performance degradation resulting from the mismatch between short-context training and long-context inference; and (3) inefficiencies in tree attention mechanisms when managing long token sequences. This work introduces LongSpec, a framework that addresses these challenges through three core innovations: a memory-efficient draft model with a constant-sized KV cache; novel position indices that mitigate the training-inference mismatch; and an attention aggregation strategy that combines fast prefix computation with standard tree attention to enable efficient decoding. Experimental results confirm the effectiveness of LongSpec, achieving up to a 3.26x speedup over strong Flash Attention baselines across five long-context understanding datasets, as well as a 2.25x reduction in wall-clock time on the AIME24 long reasoning task with the QwQ model, demonstrating significant latency improvements for long-context applications. The code is available at https://github.com/sail-sg/LongSpec.
SubGen: Token Generation in Sublinear Time and Memory
Despite the significant success of large language models (LLMs), their extensive memory requirements pose challenges for deploying them in long-context token generation. The substantial memory footprint of LLM decoders arises from the necessity to store all previous tokens in the attention module, a requirement imposed by key-value (KV) caching. In this work, our focus is on developing an efficient compression technique for the KV cache. Empirical evidence indicates a significant clustering tendency within key embeddings in the attention module. Building on this key insight, we have devised a novel caching method with sublinear complexity, employing online clustering on key tokens and online ell_2 sampling on values. The result is a provably accurate and efficient attention decoding algorithm, termed SubGen. Not only does this algorithm ensure a sublinear memory footprint and sublinear time complexity, but we also establish a tight error bound for our approach. Empirical evaluations on long-context question-answering tasks demonstrate that SubGen significantly outperforms existing and state-of-the-art KV cache compression methods in terms of performance and efficiency.
UniGist: Towards General and Hardware-aligned Sequence-level Long Context Compression
Large language models are increasingly capable of handling long-context inputs, but the memory overhead of key-value (KV) cache remains a major bottleneck for general-purpose deployment. While various compression strategies have been explored, sequence-level compression, which drops the full KV caches for certain tokens, is particularly challenging as it can lead to the loss of important contextual information. To address this, we introduce UniGist, a sequence-level long-context compression framework that efficiently preserves context information by replacing raw tokens with special compression tokens (gists) in a fine-grained manner. We adopt a chunk-free training strategy and design an efficient kernel with a gist shift trick, enabling optimized GPU training. Our scheme also supports flexible inference by allowing the actual removal of compressed tokens, resulting in real-time memory savings. Experiments across multiple long-context tasks demonstrate that UniGist significantly improves compression quality, with especially strong performance in detail-recalling tasks and long-range dependency modeling.
Category-Aware Semantic Caching for Heterogeneous LLM Workloads
LLM serving systems process heterogeneous query workloads where different categories exhibit different characteristics. Code queries cluster densely in embedding space while conversational queries distribute sparsely. Content staleness varies from minutes (stock data) to months (code patterns). Query repetition patterns range from power-law (code) to uniform (conversation), producing long tail cache hit rate distributions: high-repetition categories achieve 40-60% hit rates while low-repetition or volatile categories achieve 5-15% hit rates. Vector databases must exclude the long tail because remote search costs (30ms) require 15--20% hit rates to break even, leaving 20-30% of production traffic uncached. Uniform cache policies compound this problem: fixed thresholds cause false positives in dense spaces and miss valid paraphrases in sparse spaces; fixed TTLs waste memory or serve stale data. This paper presents category-aware semantic caching where similarity thresholds, TTLs, and quotas vary by query category. We present a hybrid architecture separating in-memory HNSW search from external document storage, reducing miss cost from 30ms to 2ms. This reduction makes low-hit-rate categories economically viable (break-even at 3-5% versus 15-20%), enabling cache coverage across the entire workload distribution. Adaptive load-based policies extend this framework to respond to downstream model load, dynamically adjusting thresholds and TTLs to reduce traffic to overloaded models by 9-17% in theoretical projections.
Compressed Context Memory For Online Language Model Interaction
This paper presents a novel context compression method for Transformer language models in online scenarios such as ChatGPT, where the context continually expands. As the context lengthens, the attention process requires more memory and computational resources, which in turn reduces the throughput of the language model. To this end, we propose a compressed context memory system that continually compresses the growing context into a compact memory space. The compression process simply involves integrating a lightweight conditional LoRA into the language model's forward pass during inference. Based on the compressed context memory, the language model can perform inference with reduced memory and attention operations. Through evaluations on conversation, personalization, and multi-task learning, we demonstrate that our approach achieves the performance level of a full context model with 5times smaller context memory space. Codes are available at https://github.com/snu-mllab/context-memory.
Auditing Prompt Caching in Language Model APIs
Prompt caching in large language models (LLMs) results in data-dependent timing variations: cached prompts are processed faster than non-cached prompts. These timing differences introduce the risk of side-channel timing attacks. For example, if the cache is shared across users, an attacker could identify cached prompts from fast API response times to learn information about other users' prompts. Because prompt caching may cause privacy leakage, transparency around the caching policies of API providers is important. To this end, we develop and conduct statistical audits to detect prompt caching in real-world LLM API providers. We detect global cache sharing across users in seven API providers, including OpenAI, resulting in potential privacy leakage about users' prompts. Timing variations due to prompt caching can also result in leakage of information about model architecture. Namely, we find evidence that OpenAI's embedding model is a decoder-only Transformer, which was previously not publicly known.
Beyond RAG: Task-Aware KV Cache Compression for Comprehensive Knowledge Reasoning
Incorporating external knowledge in large language models (LLMs) enhances their utility across diverse applications, but existing methods have trade-offs. Retrieval-Augmented Generation (RAG) fetches evidence via similarity search, but key information may fall outside top ranked results. Long-context models can process multiple documents but are computationally expensive and limited by context window size. Inspired by students condensing study material for open-book exams, we propose task-aware key-value (KV) cache compression, which compresses external knowledge in a zero- or few-shot setup. This enables LLMs to reason efficiently over a compacted representation of all relevant information. Experiments show our approach outperforms both RAG and task-agnostic compression methods. On LongBench v2, it improves accuracy by up to 7 absolute points over RAG with a 30x compression rate, while reducing inference latency from 0.43s to 0.16s. A synthetic dataset highlights that RAG performs well when sparse evidence suffices, whereas task-aware compression is superior for broad knowledge tasks.
Marathon: A Race Through the Realm of Long Context with Large Language Models
Although there are currently many benchmarks available for evaluating the long context understanding and reasoning capability of large language models, with the expansion of the context window in these models, the existing long context benchmarks are no longer sufficient for evaluating the long context understanding and reasoning capability of large language models. In this paper, we have developed a fresh long context evaluation benchmark, which we name it Marathon in the form of multiple choice questions, inspired by benchmarks such as MMLU, for assessing the long context comprehension capability of large language models quickly, accurately, and objectively. We have evaluated several of the latest and most popular large language models, as well as three recent and effective long context optimization methods, on our benchmark. This showcases the long context reasoning and comprehension capabilities of these large language models and validates the effectiveness of these optimization methods. Marathon is available at https://huggingface.co/datasets/Lemoncoke/Marathon.
CodeRAG-Bench: Can Retrieval Augment Code Generation?
While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.
CIFLEX: Contextual Instruction Flow for Sub-task Execution in Multi-Turn Interactions with a Single On-Device LLM
We present CIFLEX (Contextual Instruction Flow for Sub-task Execution), which is a novel execution system for efficient sub-task handling in multi-turn interactions with a single on-device large language model (LLM). As LLMs become increasingly capable, a single model is expected to handle diverse sub-tasks that more effectively and comprehensively support answering user requests. Naive approach reprocesses the entire conversation context when switching between main and sub-tasks (e.g., query rewriting, summarization), incurring significant computational overhead. CIFLEX mitigates this overhead by reusing the key-value (KV) cache from the main task and injecting only task-specific instructions into isolated side paths. After sub-task execution, the model rolls back to the main path via cached context, thereby avoiding redundant prefill computation. To support sub-task selection, we also develop a hierarchical classification strategy tailored for small-scale models, decomposing multi-choice decisions into binary ones. Experiments show that CIFLEX significantly reduces computational costs without degrading task performance, enabling scalable and efficient multi-task dialogue on-device.
Scaling Up Efficient Small Language Models Serving and Deployment for Semantic Job Search
Large Language Models (LLMs) have demonstrated impressive quality when applied to predictive tasks such as relevance ranking and semantic search. However, deployment of such LLMs remains prohibitively expensive for industry applications with strict latency and throughput requirements. In this work, we present lessons and efficiency insights from developing a purely text-based decoder-only Small Language Model (SLM) for a semantic search application at LinkedIn. Particularly, we discuss model compression techniques such as pruning that allow us to reduce the model size by up to 40% while maintaining the accuracy. Additionally, we present context compression techniques that allow us to reduce the input context length by up to 10x with minimal loss of accuracy. Finally, we present practical lessons from optimizing the serving infrastructure for deploying such a system on GPUs at scale, serving millions of requests per second. Taken together, this allows us to increase our system's throughput by 10x in a real-world deployment, while meeting our quality bar.
Efficient Inference of Vision Instruction-Following Models with Elastic Cache
In the field of instruction-following large vision-language models (LVLMs), the efficient deployment of these models faces challenges, notably due to the high memory demands of their key-value (KV) caches. Conventional cache management strategies for LLMs focus on cache eviction, which often fails to address the specific needs of multimodal instruction-following models. Recognizing this gap, in this paper, we introduce Elastic Cache, a novel approach that benefits from applying distinct acceleration methods for instruction encoding and output generation stages. We investigate the metrics of importance in different stages and propose an importance-driven cache merging strategy to prune redundancy caches. Instead of discarding less important caches, our strategy identifies important key/value vectors as anchor points. Surrounding less important caches are then merged with these anchors, enhancing the preservation of contextual information in the KV caches while yielding an arbitrary acceleration ratio. For instruction encoding, we utilize the frequency to evaluate the importance of caches. Regarding output generation, we prioritize tokens based on their distance with an offset, by which both the initial and most recent tokens are retained. Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation across various tasks. Code is available at https://github.com/liuzuyan/ElasticCache
CompLLM: Compression for Long Context Q&A
Large Language Models (LLMs) face significant computational challenges when processing long contexts due to the quadratic complexity of self-attention. While soft context compression methods, which map input text to smaller latent representations, have shown promise, their real-world adoption is limited. Existing techniques typically compress the context as a single unit, which leads to quadratic compression complexity and an inability to reuse computations across queries with overlapping contexts. In this work, we introduce CompLLM, a soft compression technique designed for practical deployment. Instead of processing the context holistically, CompLLM divides it into segments and compresses each one independently. This simple design choice yields three critical properties: efficiency, as the compression step scales linearly with the context length; scalability, enabling models trained on short sequences (e.g., 1k tokens) to generalize to contexts of 100k tokens; and reusability, allowing compressed segments to be cached and reused across different queries. Our experiments show that with a 2x compression rate, at high context lengths CompLLM speeds up Time To First Token (TTFT) by up to 4x and reduces the KV cache size by 50%. Furthermore, CompLLM achieves performance comparable to that obtained with the uncompressed context, and even surpasses it on very long sequences, demonstrating its effectiveness and practical utility.
Model Reveals What to Cache: Profiling-Based Feature Reuse for Video Diffusion Models
Recent advances in diffusion models have demonstrated remarkable capabilities in video generation. However, the computational intensity remains a significant challenge for practical applications. While feature caching has been proposed to reduce the computational burden of diffusion models, existing methods typically overlook the heterogeneous significance of individual blocks, resulting in suboptimal reuse and degraded output quality. To this end, we address this gap by introducing ProfilingDiT, a novel adaptive caching strategy that explicitly disentangles foreground and background-focused blocks. Through a systematic analysis of attention distributions in diffusion models, we reveal a key observation: 1) Most layers exhibit a consistent preference for either foreground or background regions. 2) Predicted noise shows low inter-step similarity initially, which stabilizes as denoising progresses. This finding inspires us to formulate a selective caching strategy that preserves full computation for dynamic foreground elements while efficiently caching static background features. Our approach substantially reduces computational overhead while preserving visual fidelity. Extensive experiments demonstrate that our framework achieves significant acceleration (e.g., 2.01 times speedup for Wan2.1) while maintaining visual fidelity across comprehensive quality metrics, establishing a viable method for efficient video generation.
ARC-Encoder: learning compressed text representations for large language models
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs x-times fewer continuous representations (typically x!in!{4,8}) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .
ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
To reduce memory costs in long-context inference with Large Language Models (LLMs), many recent works focus on compressing the key-value (KV) cache of different tokens. However, we identify that the previous KV cache compression methods measure token importance individually, neglecting the dependency between different tokens in the real-world language characterics. In light of this, we introduce ChunkKV, grouping the tokens in a chunk as a basic compressing unit, and retaining the most informative semantic chunks while discarding the less important ones. Furthermore, observing that ChunkKV exhibits higher similarity in the preserved indices across different layers, we propose layer-wise index reuse to further reduce computational overhead. We evaluated ChunkKV on cutting-edge long-context benchmarks including LongBench and Needle-In-A-HayStack, as well as the GSM8K and JailbreakV in-context learning benchmark. Our experiments with instruction tuning and multi-step reasoning (O1 and R1) LLMs, achieve up to 10\% performance improvement under aggressive compression ratios compared to existing methods.
LLoCO: Learning Long Contexts Offline
Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. We introduce LLoCO, a technique that combines context compression, retrieval, and parameter-efficient finetuning using LoRA. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using 30times fewer tokens during inference. LLoCO achieves up to 7.62times speed-up and substantially reduces the cost of long document question answering, making it a promising solution for efficient long context processing. Our code is publicly available at https://github.com/jeffreysijuntan/lloco.
REPOFUSE: Repository-Level Code Completion with Fused Dual Context
The success of language models in code assistance has spurred the proposal of repository-level code completion as a means to enhance prediction accuracy, utilizing the context from the entire codebase. However, this amplified context can inadvertently increase inference latency, potentially undermining the developer experience and deterring tool adoption - a challenge we termed the Context-Latency Conundrum. This paper introduces REPOFUSE, a pioneering solution designed to enhance repository-level code completion without the latency trade-off. REPOFUSE uniquely fuses two types of context: the analogy context, rooted in code analogies, and the rationale context, which encompasses in-depth semantic relationships. We propose a novel rank truncated generation (RTG) technique that efficiently condenses these contexts into prompts with restricted size. This enables REPOFUSE to deliver precise code completions while maintaining inference efficiency. Through testing with the CrossCodeEval suite, REPOFUSE has demonstrated a significant leap over existing models, achieving a 40.90% to 59.75% increase in exact match (EM) accuracy for code completions and a 26.8% enhancement in inference speed. Beyond experimental validation, REPOFUSE has been integrated into the workflow of a large enterprise, where it actively supports various coding tasks.
Context is Gold to find the Gold Passage: Evaluating and Training Contextual Document Embeddings
A limitation of modern document retrieval embedding methods is that they typically encode passages (chunks) from the same documents independently, often overlooking crucial contextual information from the rest of the document that could greatly improve individual chunk representations. In this work, we introduce ConTEB (Context-aware Text Embedding Benchmark), a benchmark designed to evaluate retrieval models on their ability to leverage document-wide context. Our results show that state-of-the-art embedding models struggle in retrieval scenarios where context is required. To address this limitation, we propose InSeNT (In-sequence Negative Training), a novel contrastive post-training approach which combined with late chunking pooling enhances contextual representation learning while preserving computational efficiency. Our method significantly improves retrieval quality on ConTEB without sacrificing base model performance. We further find chunks embedded with our method are more robust to suboptimal chunking strategies and larger retrieval corpus sizes. We open-source all artifacts at https://github.com/illuin-tech/contextual-embeddings.
The CAP Principle for LLM Serving: A Survey of Long-Context Large Language Model Serving
We survey the large language model (LLM) serving area to understand the intricate dynamics between cost-efficiency and accuracy, which is magnified by the growing need for longer contextual understanding when deploying models at a massive scale. Our findings reveal that works in this space optimize along three distinct but conflicting goals: improving serving context length (C), improving serving accuracy (A), and improving serving performance (P). Drawing inspiration from the CAP theorem in databases, we propose a CAP principle for LLM serving, which suggests that any optimization can improve at most two of these three goals simultaneously. Our survey categorizes existing works within this framework. We find the definition and continuity of user-perceived measurement metrics are crucial in determining whether a goal has been met, akin to prior CAP databases in the wild. We recognize the CAP principle for LLM serving as a guiding principle, rather than a formal theorem, to inform designers of the inherent and dynamic trade-offs in serving models. As serving accuracy and performance have been extensively studied, this survey focuses on works that extend serving context length and address the resulting challenges.
RetroInfer: A Vector-Storage Approach for Scalable Long-Context LLM Inference
The growing context lengths of large language models (LLMs) pose significant challenges for efficient inference, primarily due to GPU memory and bandwidth constraints. We present RetroInfer, a novel system that reconceptualizes the key-value (KV) cache as a vector storage system which exploits the inherent attention sparsity to accelerate long-context LLM inference. At its core is the wave index, an Attention-aWare VEctor index that enables efficient and accurate retrieval of critical tokens through techniques such as tripartite attention approximation, accuracy-bounded attention estimation, and segmented clustering. Complementing this is the wave buffer, which coordinates KV cache placement and overlaps computation and data transfer across GPU and CPU to sustain high throughput. Unlike prior sparsity-based methods that struggle with token selection and hardware coordination, RetroInfer delivers robust performance without compromising model accuracy. Experiments on long-context benchmarks show up to 4.5X speedup over full attention within GPU memory limits and up to 10.5X over sparse attention baselines when KV cache is extended to CPU memory, all while preserving full-attention-level accuracy.
MacRAG: Compress, Slice, and Scale-up for Multi-Scale Adaptive Context RAG
Long-context large language models (LC LLMs) combined with retrieval-augmented generation (RAG) hold strong potential for complex multi-hop and large-document tasks. However, existing RAG systems often suffer from imprecise retrieval, incomplete context coverage under constrained windows, and fragmented information from suboptimal context construction. We introduce Multi-scale Adaptive Context RAG (MacRAG), a hierarchical RAG framework that compresses and partitions documents into coarse-to-fine granularities, then adaptively merges relevant contexts through real-time chunk- and document-level expansions. By initiating with finest-level retrieval and progressively incorporating broader, higher-level context, MacRAG constructs effective query-specific long contexts, optimizing both precision and coverage. Evaluations on challenging LongBench expansions of HotpotQA, 2WikiMultihopQA, and Musique confirm MacRAG consistently surpasses baseline RAG pipelines in single- and multi-step generation using Llama-3.1-8B, Gemini-1.5-pro, and GPT-4o. Our results establish MacRAG as an efficient, scalable solution for real-world long-context, multi-hop reasoning. Our code is available at https://github.com/Leezekun/MacRAG.
In-context KV-Cache Eviction for LLMs via Attention-Gate
The KV-Cache technique has become the standard for the inference of large language models (LLMs). It caches states of self-attention to avoid recomputation. Yet, it is widely criticized that KV-Cache can become a bottleneck of the LLM inference system, especially when confronted with ultra-large models and long-context queries. A natural remedy is to discard the KV-Cache for less important tokens, with StreamingLLM as an example, but the used static eviction strategies cannot flexibly adapt to varying contexts. Remedies like H2O leverage accumulative attention scores to perform dynamic eviction but suffer from the attention bias issue in capturing contextual information. This paper bridges this gap by devising a parameterized KV-Cache eviction mechanism, dubbed as Attention-Gate, which accepts the whole context as input and yields eviction flags for each token to realize in-context eviction. The subsequent self-attention module proceeds according to the flags and only the KV states for the remaining tokens need to be cached. The Attention-Gates can vary among different heads and layers and be trivially plugged into pre-trained LLMs, tuned by cost-effective continual pre-training or supervised fine-tuning objectives to acquire what to discard. The computational and memory overhead introduced by Attention-Gates is minimal. Our method is validated across multiple tasks, demonstrating both efficiency and adaptability. After a highly efficient continual pre-training, it achieves higher average accuracy and evicts more tokens compared to traditional training-free methods. In supervised fine-tuning, it not only evicts many tokens but also outperforms LoRA-finetuned LLMs on some datasets, such as RTE, where it improves accuracy by 13.9% while evicting 62.8% of tokens, showing that effective eviction of redundant tokens can even enhance performance.
Context Compression for Auto-regressive Transformers with Sentinel Tokens
The quadratic complexity of the attention module makes it gradually become the bulk of compute in Transformer-based LLMs during generation. Moreover, the excessive key-value cache that arises when dealing with long inputs also brings severe issues on memory footprint and inference latency. In this work, we propose a plug-and-play approach that is able to incrementally compress the intermediate activation of a specified span of tokens into compact ones, thereby reducing both memory and computational cost when processing subsequent context. Experiments on both in-domain language modeling and zero-shot open-ended document generation demonstrate the advantage of our approach over sparse attention baselines in terms of fluency, n-gram matching, and semantic similarity. At last, we comprehensively profile the benefit of context compression on improving the system throughout. Code is available at https://github.com/DRSY/KV_Compression.
DynamicKV: Task-Aware Adaptive KV Cache Compression for Long Context LLMs
Efficient KV cache management in LLMs is crucial for long-context tasks like RAG and summarization. Existing KV cache compression methods enforce a fixed pattern, neglecting task-specific characteristics and reducing the retention of essential information. However, we observe distinct activation patterns across layers in various tasks, highlighting the need for adaptive strategies tailored to each task's unique demands. Based on this insight, we propose DynamicKV, a method that dynamically optimizes token retention by adjusting the number of tokens retained at each layer to adapt to the specific task. DynamicKV establishes global and per-layer maximum KV cache budgets, temporarily retaining the maximum budget for the current layer, and periodically updating the KV cache sizes of all preceding layers during inference. Our method retains only 1.7% of the KV cache size while achieving ~85% of the Full KV cache performance on LongBench. Notably, even under extreme compression (0.9%), DynamicKV surpasses state-of-the-art (SOTA) methods by 11% in the Needle-in-a-Haystack test using Mistral-7B-Instruct-v0.2. The code will be released.
Dialogue Without Limits: Constant-Sized KV Caches for Extended Responses in LLMs
Autoregressive Transformers rely on Key-Value (KV) caching to accelerate inference. However, the linear growth of the KV cache with context length leads to excessive memory consumption and bandwidth constraints. This bottleneck is particularly problematic in real-time applications -- such as chatbots and interactive assistants -- where low latency and high memory efficiency are critical. Existing methods drop distant tokens or compress states in a lossy manner, sacrificing accuracy by discarding vital context or introducing bias. We propose MorphKV, an inference-time technique that maintains a constant-sized KV cache while preserving accuracy. MorphKV balances long-range dependencies and local coherence during text generation. It eliminates early-token bias while retaining high-fidelity context by adaptively ranking tokens through correlation-aware selection. Unlike heuristic retention or lossy compression, MorphKV iteratively refines the KV cache via lightweight updates guided by attention patterns of recent tokens. This approach captures inter-token correlation with greater accuracy, crucial for tasks like content creation and code generation. Our studies on long-response tasks show 52.9% memory savings and 18.2% higher accuracy on average compared to state-of-the-art prior works, enabling efficient real-world deployment.
InfiniPot: Infinite Context Processing on Memory-Constrained LLMs
Handling long input contexts remains a significant challenge for Large Language Models (LLMs), particularly in resource-constrained environments such as mobile devices. Our work aims to address this limitation by introducing InfiniPot, a novel KV cache control framework designed to enable pre-trained LLMs to manage extensive sequences within fixed memory constraints efficiently, without requiring additional training. InfiniPot leverages Continual Context Distillation (CCD), an iterative process that compresses and retains essential information through novel importance metrics, effectively maintaining critical data even without access to future context. Our comprehensive evaluations indicate that InfiniPot significantly outperforms models trained for long contexts in various NLP tasks, establishing its efficacy and versatility. This work represents a substantial advancement toward making LLMs applicable to a broader range of real-world scenarios.
What to Retrieve for Effective Retrieval-Augmented Code Generation? An Empirical Study and Beyond
Repository-level code generation remains challenging due to complex code dependencies and the limitations of large language models (LLMs) in processing long contexts. While retrieval-augmented generation (RAG) frameworks are widely adopted, the effectiveness of different retrieved information sources-contextual code, APIs, and similar snippets-has not been rigorously analyzed. Through an empirical study on two benchmarks, we demonstrate that in-context code and potential API information significantly enhance LLM performance, whereas retrieved similar code often introduces noise, degrading results by up to 15%. Based on the preliminary results, we propose AllianceCoder, a novel context-integrated method that employs chain-of-thought prompting to decompose user queries into implementation steps and retrieves APIs via semantic description matching. Through extensive experiments on CoderEval and RepoExec, AllianceCoder achieves state-of-the-art performance, improving Pass@1 by up to 20% over existing approaches.
Can LLMs Maintain Fundamental Abilities under KV Cache Compression?
This paper investigates an under-explored challenge in large language models (LLMs): the impact of KV cache compression methods on LLMs' fundamental capabilities. While existing methods achieve impressive compression ratios on long-context benchmarks, their effects on core model capabilities remain understudied. We present a comprehensive empirical study evaluating prominent KV cache compression methods across diverse tasks, spanning world knowledge, commonsense reasoning, arithmetic reasoning, code generation, safety, and long-context understanding and generation.Our analysis reveals that KV cache compression methods exhibit task-specific performance degradation. Arithmetic reasoning tasks prove particularly sensitive to aggressive compression, with different methods showing performance drops of 17.4%-43.3%. Notably, the DeepSeek R1 Distill model exhibits more robust compression tolerance compared to instruction-tuned models, showing only 9.67%-25.53% performance degradation. Based on our analysis of attention patterns and cross-task compression performance, we propose ShotKV, a novel compression approach that distinctly handles prefill and decoding phases while maintaining shot-level semantic coherence. Empirical results show that ShotKV achieves 9%-18% performance improvements on long-context generation tasks under aggressive compression ratios.
