new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 19

Microstructure quality control of steels using deep learning

In quality control, microstructures are investigated rigorously to ensure structural integrity, exclude the presence of critical volume defects, and validate the formation of the target microstructure. For quenched, hierarchically-structured steels, the morphology of the bainitic and martensitic microstructures are of major concern to guarantee the reliability of the material under service conditions. Therefore, industries conduct small sample-size inspections of materials cross-sections through metallographers to validate the needle morphology of such microstructures. We demonstrate round-robin test results revealing that this visual grading is afflicted by pronounced subjectivity despite the thorough training of personnel. Instead, we propose a deep learning image classification approach that distinguishes steels based on their microstructure type and classifies their needle length alluding to the ISO 643 grain size assessment standard. This classification approach facilitates the reliable, objective, and automated classification of hierarchically structured steels. Specifically, an accuracy of 96% and roughly 91% is attained for the distinction of martensite/bainite subtypes and needle length, respectively. This is achieved on an image dataset that contains significant variance and labeling noise as it is acquired over more than ten years from multiple plants, alloys, etchant applications, and light optical microscopes by many metallographers (raters). Interpretability analysis gives insights into the decision-making of these models and allows for estimating their generalization capability.

  • 5 authors
·
Jun 1, 2023

Optimal Weighted Convolution for Classification and Denosing

We introduce a novel weighted convolution operator that enhances traditional convolutional neural networks (CNNs) by integrating a spatial density function into the convolution operator. This extension enables the network to differentially weight neighbouring pixels based on their relative position to the reference pixel, improving spatial characterisation and feature extraction. The proposed operator maintains the same number of trainable parameters and is fully compatible with existing CNN architectures. Although developed for 2D image data, the framework is generalisable to signals on regular grids of arbitrary dimensions, such as 3D volumetric data or 1D time series. We propose an efficient implementation of the weighted convolution by pre-computing the density function and achieving execution times comparable to standard convolution layers. We evaluate our method on two deep learning tasks: image classification using the CIFAR-100 dataset [KH+09] and image denoising using the DIV2K dataset [AT17]. Experimental results with state-of-the-art classification (e.g., VGG [SZ15], ResNet [HZRS16]) and denoising (e.g., DnCNN [ZZC+17], NAFNet [CCZS22]) methods show that the weighted convolution improves performance with respect to standard convolution across different quantitative metrics. For example, VGG achieves an accuracy of 66.94% with weighted convolution versus 56.89% with standard convolution on the classification problem, while DnCNN improves the PSNR value from 20.17 to 22.63 on the denoising problem. All models were trained on the CINECA Leonardo cluster to reduce the execution time and improve the tuning of the density function values. The PyTorch implementation of the weighted convolution is publicly available at: https://github.com/cammarasana123/weightedConvolution2.0.

  • 2 authors
·
May 30, 2025

NOVUM: Neural Object Volumes for Robust Object Classification

Discriminative models for object classification typically learn image-based representations that do not capture the compositional and 3D nature of objects. In this work, we show that explicitly integrating 3D compositional object representations into deep networks for image classification leads to a largely enhanced generalization in out-of-distribution scenarios. In particular, we introduce a novel architecture, referred to as NOVUM, that consists of a feature extractor and a neural object volume for every target object class. Each neural object volume is a composition of 3D Gaussians that emit feature vectors. This compositional object representation allows for a highly robust and fast estimation of the object class by independently matching the features of the 3D Gaussians of each category to features extracted from an input image. Additionally, the object pose can be estimated via inverse rendering of the corresponding neural object volume. To enable the classification of objects, the neural features at each 3D Gaussian are trained discriminatively to be distinct from (i) the features of 3D Gaussians in other categories, (ii) features of other 3D Gaussians of the same object, and (iii) the background features. Our experiments show that NOVUM offers intriguing advantages over standard architectures due to the 3D compositional structure of the object representation, namely: (1) An exceptional robustness across a spectrum of real-world and synthetic out-of-distribution shifts and (2) an enhanced human interpretability compared to standard models, all while maintaining real-time inference and a competitive accuracy on in-distribution data.

  • 6 authors
·
May 23, 2023

A Comprehensive Survey on Model Quantization for Deep Neural Networks in Image Classification

Recent advancements in machine learning achieved by Deep Neural Networks (DNNs) have been significant. While demonstrating high accuracy, DNNs are associated with a huge number of parameters and computations, which leads to high memory usage and energy consumption. As a result, deploying DNNs on devices with constrained hardware resources poses significant challenges. To overcome this, various compression techniques have been widely employed to optimize DNN accelerators. A promising approach is quantization, in which the full-precision values are stored in low bit-width precision. Quantization not only reduces memory requirements but also replaces high-cost operations with low-cost ones. DNN quantization offers flexibility and efficiency in hardware design, making it a widely adopted technique in various methods. Since quantization has been extensively utilized in previous works, there is a need for an integrated report that provides an understanding, analysis, and comparison of different quantization approaches. Consequently, we present a comprehensive survey of quantization concepts and methods, with a focus on image classification. We describe clustering-based quantization methods and explore the use of a scale factor parameter for approximating full-precision values. Moreover, we thoroughly review the training of a quantized DNN, including the use of a straight-through estimator and quantization regularization. We explain the replacement of floating-point operations with low-cost bitwise operations in a quantized DNN and the sensitivity of different layers in quantization. Furthermore, we highlight the evaluation metrics for quantization methods and important benchmarks in the image classification task. We also present the accuracy of the state-of-the-art methods on CIFAR-10 and ImageNet.

  • 3 authors
·
May 14, 2022

Deep Learning for Identifying Iran's Cultural Heritage Buildings in Need of Conservation Using Image Classification and Grad-CAM

The cultural heritage buildings (CHB), which are part of mankind's history and identity, are in constant danger of damage or in extreme situations total destruction. That being said, it's of utmost importance to preserve them by identifying the existent, or presumptive, defects using novel methods so that renovation processes can be done in a timely manner and with higher accuracy. The main goal of this research is to use new deep learning (DL) methods in the process of preserving CHBs (situated in Iran); a goal that has been neglected especially in developing countries such as Iran, as these countries still preserve their CHBs using manual, and even archaic, methods that need direct human supervision. Having proven their effectiveness and performance when it comes to processing images, the convolutional neural networks (CNN) are a staple in computer vision (CV) literacy and this paper is not exempt. When lacking enough CHB images, training a CNN from scratch would be very difficult and prone to overfitting; that's why we opted to use a technique called transfer learning (TL) in which we used pre-trained ResNet, MobileNet, and Inception networks, for classification. Even more, the Grad-CAM was utilized to localize the defects to some extent. The final results were very favorable based on those of similar research. The final proposed model can pave the way for moving from manual to unmanned CHB conservation, hence an increase in accuracy and a decrease in human-induced errors.

  • 2 authors
·
Feb 28, 2023

Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification

Deep AUC Maximization (DAM) is a new paradigm for learning a deep neural network by maximizing the AUC score of the model on a dataset. Most previous works of AUC maximization focus on the perspective of optimization by designing efficient stochastic algorithms, and studies on generalization performance of large-scale DAM on difficult tasks are missing. In this work, we aim to make DAM more practical for interesting real-world applications (e.g., medical image classification). First, we propose a new margin-based min-max surrogate loss function for the AUC score (named as AUC min-max-margin loss or simply AUC margin loss for short). It is more robust than the commonly used AUC square loss, while enjoying the same advantage in terms of large-scale stochastic optimization. Second, we conduct extensive empirical studies of our DAM method on four difficult medical image classification tasks, namely (i) classification of chest x-ray images for identifying many threatening diseases, (ii) classification of images of skin lesions for identifying melanoma, (iii) classification of mammogram for breast cancer screening, and (iv) classification of microscopic images for identifying tumor tissue. Our studies demonstrate that the proposed DAM method improves the performance of optimizing cross-entropy loss by a large margin, and also achieves better performance than optimizing the existing AUC square loss on these medical image classification tasks. Specifically, our DAM method has achieved the 1st place on Stanford CheXpert competition on Aug. 31, 2020. To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets. We also conduct extensive ablation studies to demonstrate the advantages of the new AUC margin loss over the AUC square loss on benchmark datasets. The proposed method is implemented in our open-sourced library LibAUC (www.libauc.org).

  • 4 authors
·
Dec 5, 2020

Underwater SONAR Image Classification and Analysis using LIME-based Explainable Artificial Intelligence

Deep learning techniques have revolutionized image classification by mimicking human cognition and automating complex decision-making processes. However, the deployment of AI systems in the wild, especially in high-security domains such as defence, is curbed by the lack of explainability of the model. To this end, eXplainable AI (XAI) is an emerging area of research that is intended to explore the unexplained hidden black box nature of deep neural networks. This paper explores the application of the eXplainable Artificial Intelligence (XAI) tool to interpret the underwater image classification results, one of the first works in the domain to the best of our knowledge. Our study delves into the realm of SONAR image classification using a custom dataset derived from diverse sources, including the Seabed Objects KLSG dataset, the camera SONAR dataset, the mine SONAR images dataset, and the SCTD dataset. An extensive analysis of transfer learning techniques for image classification using benchmark Convolutional Neural Network (CNN) architectures such as VGG16, ResNet50, InceptionV3, DenseNet121, etc. is carried out. On top of this classification model, a post-hoc XAI technique, viz. Local Interpretable Model-Agnostic Explanations (LIME) are incorporated to provide transparent justifications for the model's decisions by perturbing input data locally to see how predictions change. Furthermore, Submodular Picks LIME (SP-LIME) a version of LIME particular to images, that perturbs the image based on the submodular picks is also extensively studied. To this end, two submodular optimization algorithms i.e. Quickshift and Simple Linear Iterative Clustering (SLIC) are leveraged towards submodular picks. The extensive analysis of XAI techniques highlights interpretability of the results in a more human-compliant way, thus boosting our confidence and reliability.

  • 2 authors
·
Aug 23, 2024

Training-free Test-time Improvement for Explainable Medical Image Classification

Deep learning-based medical image classification techniques are rapidly advancing in medical image analysis, making it crucial to develop accurate and trustworthy models that can be efficiently deployed across diverse clinical scenarios. Concept Bottleneck Models (CBMs), which first predict a set of explainable concepts from images and then perform classification based on these concepts, are increasingly being adopted for explainable medical image classification. However, the inherent explainability of CBMs introduces new challenges when deploying trained models to new environments. Variations in imaging protocols and staining methods may induce concept-level shifts, such as alterations in color distribution and scale. Furthermore, since CBM training requires explicit concept annotations, fine-tuning models solely with image-level labels could compromise concept prediction accuracy and faithfulness - a critical limitation given the high cost of acquiring expert-annotated concept labels in medical domains. To address these challenges, we propose a training-free confusion concept identification strategy. By leveraging minimal new data (e.g., 4 images per class) with only image-level labels, our approach enhances out-of-domain performance without sacrificing source domain accuracy through two key operations: masking misactivated confounding concepts and amplifying under-activated discriminative concepts. The efficacy of our method is validated on both skin and white blood cell images. Our code is available at: https://github.com/riverback/TF-TTI-XMed.

  • 5 authors
·
Jun 22, 2025 1

Hybrid Quantum-Classical Model for Image Classification

This study presents a systematic comparison between hybrid quantum-classical neural networks and purely classical models across three benchmark datasets (MNIST, CIFAR100, and STL10) to evaluate their performance, efficiency, and robustness. The hybrid models integrate parameterized quantum circuits with classical deep learning architectures, while the classical counterparts use conventional convolutional neural networks (CNNs). Experiments were conducted over 50 training epochs for each dataset, with evaluations on validation accuracy, test accuracy, training time, computational resource usage, and adversarial robustness (tested with epsilon=0.1 perturbations).Key findings demonstrate that hybrid models consistently outperform classical models in final accuracy, achieving {99.38\% (MNIST), 41.69\% (CIFAR100), and 74.05\% (STL10) validation accuracy, compared to classical benchmarks of 98.21\%, 32.25\%, and 63.76\%, respectively. Notably, the hybrid advantage scales with dataset complexity, showing the most significant gains on CIFAR100 (+9.44\%) and STL10 (+10.29\%). Hybrid models also train 5--12times faster (e.g., 21.23s vs. 108.44s per epoch on MNIST) and use 6--32\% fewer parameters} while maintaining superior generalization to unseen test data.Adversarial robustness tests reveal that hybrid models are significantly more resilient on simpler datasets (e.g., 45.27\% robust accuracy on MNIST vs. 10.80\% for classical) but show comparable fragility on complex datasets like CIFAR100 (sim1\% robustness for both). Resource efficiency analyses indicate that hybrid models consume less memory (4--5GB vs. 5--6GB for classical) and lower CPU utilization (9.5\% vs. 23.2\% on average).These results suggest that hybrid quantum-classical architectures offer compelling advantages in accuracy, training efficiency, and parameter scalability, particularly for complex vision tasks.

  • 1 authors
·
Sep 14, 2025 2

CSFMamba: Cross State Fusion Mamba Operator for Multimodal Remote Sensing Image Classification

Multimodal fusion has made great progress in the field of remote sensing image classification due to its ability to exploit the complementary spatial-spectral information. Deep learning methods such as CNN and Transformer have been widely used in these domains. State Space Models recently highlighted that prior methods suffer from quadratic computational complexity. As a result, modeling longer-range dependencies of spatial-spectral features imposes an overwhelming burden on the network. Mamba solves this problem by incorporating time-varying parameters into ordinary SSM and performing hardware optimization, but it cannot perform feature fusion directly. In order to make full use of Mamba's low computational burden and explore the potential of internal structure in multimodal feature fusion, we propose Cross State Fusion Mamba (CSFMamba) Network. Specifically, we first design the preprocessing module of remote sensing image information for the needs of Mamba structure, and combine it with CNN to extract multi-layer features. Secondly, a cross-state module based on Mamba operator is creatively designed to fully fuse the feature of the two modalities. The advantages of Mamba and CNN are combined by designing a more powerful backbone. We capture the fusion relationship between HSI and LiDAR modalities with stronger full-image understanding. The experimental results on two datasets of MUUFL and Houston2018 show that the proposed method outperforms the experimental results of Transformer under the premise of reducing the network training burden.

  • 3 authors
·
Aug 30, 2025

MEDIC: A Multi-Task Learning Dataset for Disaster Image Classification

Recent research in disaster informatics demonstrates a practical and important use case of artificial intelligence to save human lives and suffering during natural disasters based on social media contents (text and images). While notable progress has been made using texts, research on exploiting the images remains relatively under-explored. To advance image-based approaches, we propose MEDIC (Available at: https://crisisnlp.qcri.org/medic/index.html), which is the largest social media image classification dataset for humanitarian response consisting of 71,198 images to address four different tasks in a multi-task learning setup. This is the first dataset of its kind: social media images, disaster response, and multi-task learning research. An important property of this dataset is its high potential to facilitate research on multi-task learning, which recently receives much interest from the machine learning community and has shown remarkable results in terms of memory, inference speed, performance, and generalization capability. Therefore, the proposed dataset is an important resource for advancing image-based disaster management and multi-task machine learning research. We experiment with different deep learning architectures and report promising results, which are above the majority baselines for all tasks. Along with the dataset, we also release all relevant scripts (https://github.com/firojalam/medic).

  • 6 authors
·
Aug 29, 2021

FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

Deep learning techniques have provided significant improvements in hyperspectral image (HSI) classification. The current deep learning based HSI classifiers follow a patch-based learning framework by dividing the image into overlapping patches. As such, these methods are local learning methods, which have a high computational cost. In this paper, a fast patch-free global learning (FPGA) framework is proposed for HSI classification. In FPGA, an encoder-decoder based FCN is utilized to consider the global spatial information by processing the whole image, which results in fast inference. However, it is difficult to directly utilize the encoder-decoder based FCN for HSI classification as it always fails to converge due to the insufficiently diverse gradients caused by the limited training samples. To solve the divergence problem and maintain the abilities of FCN of fast inference and global spatial information mining, a global stochastic stratified sampling strategy is first proposed by transforming all the training samples into a stochastic sequence of stratified samples. This strategy can obtain diverse gradients to guarantee the convergence of the FCN in the FPGA framework. For a better design of FCN architecture, FreeNet, which is a fully end-to-end network for HSI classification, is proposed to maximize the exploitation of the global spatial information and boost the performance via a spectral attention based encoder and a lightweight decoder. A lateral connection module is also designed to connect the encoder and decoder, fusing the spatial details in the encoder and the semantic features in the decoder. The experimental results obtained using three public benchmark datasets suggest that the FPGA framework is superior to the patch-based framework in both speed and accuracy for HSI classification. Code has been made available at: https://github.com/Z-Zheng/FreeNet.

  • 4 authors
·
Nov 11, 2020

AIO-P: Expanding Neural Performance Predictors Beyond Image Classification

Evaluating neural network performance is critical to deep neural network design but a costly procedure. Neural predictors provide an efficient solution by treating architectures as samples and learning to estimate their performance on a given task. However, existing predictors are task-dependent, predominantly estimating neural network performance on image classification benchmarks. They are also search-space dependent; each predictor is designed to make predictions for a specific architecture search space with predefined topologies and set of operations. In this paper, we propose a novel All-in-One Predictor (AIO-P), which aims to pretrain neural predictors on architecture examples from multiple, separate computer vision (CV) task domains and multiple architecture spaces, and then transfer to unseen downstream CV tasks or neural architectures. We describe our proposed techniques for general graph representation, efficient predictor pretraining and knowledge infusion techniques, as well as methods to transfer to downstream tasks/spaces. Extensive experimental results show that AIO-P can achieve Mean Absolute Error (MAE) and Spearman's Rank Correlation (SRCC) below 1% and above 0.5, respectively, on a breadth of target downstream CV tasks with or without fine-tuning, outperforming a number of baselines. Moreover, AIO-P can directly transfer to new architectures not seen during training, accurately rank them and serve as an effective performance estimator when paired with an algorithm designed to preserve performance while reducing FLOPs.

  • 9 authors
·
Nov 30, 2022

Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images

The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing infected patients. Medical imaging, such as X-ray and Computed Tomography (CT), combined with the potential of Artificial Intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2 and DenseNet161) and their ensemble, using majority voting have been used to classify COVID-19, pneumoni{\ae} and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods - occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT, and using a global technique - neuron activation profiles. The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.

  • 13 authors
·
Jun 3, 2020

Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles

Once deployed, medical image analysis methods are often faced with unexpected image corruptions and noise perturbations. These unknown covariate shifts present significant challenges to deep learning based methods trained on "clean" images. This often results in unreliable predictions and poorly calibrated confidence, hence hindering clinical applicability. While recent methods have been developed to address specific issues such as confidence calibration or adversarial robustness, no single framework effectively tackles all these challenges simultaneously. To bridge this gap, we propose LaDiNE, a novel ensemble learning method combining the robustness of Vision Transformers with diffusion-based generative models for improved reliability in medical image classification. Specifically, transformer encoder blocks are used as hierarchical feature extractors that learn invariant features from images for each ensemble member, resulting in features that are robust to input perturbations. In addition, diffusion models are used as flexible density estimators to estimate member densities conditioned on the invariant features, leading to improved modeling of complex data distributions while retaining properly calibrated confidence. Extensive experiments on tuberculosis chest X-rays and melanoma skin cancer datasets demonstrate that LaDiNE achieves superior performance compared to a wide range of state-of-the-art methods by simultaneously improving prediction accuracy and confidence calibration under unseen noise, adversarial perturbations, and resolution degradation.

  • 4 authors
·
Oct 24, 2023

AgroSense: An Integrated Deep Learning System for Crop Recommendation via Soil Image Analysis and Nutrient Profiling

Meeting the increasing global demand for food security and sustainable farming requires intelligent crop recommendation systems that operate in real time. Traditional soil analysis techniques are often slow, labor-intensive, and not suitable for on-field decision-making. To address these limitations, we introduce AgroSense, a deep-learning framework that integrates soil image classification and nutrient profiling to produce accurate and contextually relevant crop recommendations. AgroSense comprises two main components: a Soil Classification Module, which leverages ResNet-18, EfficientNet-B0, and Vision Transformer architectures to categorize soil types from images; and a Crop Recommendation Module, which employs a Multi-Layer Perceptron, XGBoost, LightGBM, and TabNet to analyze structured soil data, including nutrient levels, pH, and rainfall. We curated a multimodal dataset of 10,000 paired samples drawn from publicly available Kaggle repositories, approximately 50,000 soil images across seven classes, and 25,000 nutrient profiles for experimental evaluation. The fused model achieves 98.0% accuracy, with a precision of 97.8%, a recall of 97.7%, and an F1-score of 96.75%, while RMSE and MAE drop to 0.32 and 0.27, respectively. Ablation studies underscore the critical role of multimodal coupling, and statistical validation via t-tests and ANOVA confirms the significance of our improvements. AgroSense offers a practical, scalable solution for real-time decision support in precision agriculture and paves the way for future lightweight multimodal AI systems in resource-constrained environments.

  • 3 authors
·
Sep 1, 2025

GNN-ViTCap: GNN-Enhanced Multiple Instance Learning with Vision Transformers for Whole Slide Image Classification and Captioning

Microscopic assessment of histopathology images is vital for accurate cancer diagnosis and treatment. Whole Slide Image (WSI) classification and captioning have become crucial tasks in computer-aided pathology. However, microscopic WSI face challenges such as redundant patches and unknown patch positions due to subjective pathologist captures. Moreover, generating automatic pathology captions remains a significant challenge. To address these issues, we introduce a novel GNN-ViTCap framework for classification and caption generation from histopathological microscopic images. First, a visual feature extractor generates patch embeddings. Redundant patches are then removed by dynamically clustering these embeddings using deep embedded clustering and selecting representative patches via a scalar dot attention mechanism. We build a graph by connecting each node to its nearest neighbors in the similarity matrix and apply a graph neural network to capture both local and global context. The aggregated image embeddings are projected into the language model's input space through a linear layer and combined with caption tokens to fine-tune a large language model. We validate our method on the BreakHis and PatchGastric datasets. GNN-ViTCap achieves an F1 score of 0.934 and an AUC of 0.963 for classification, along with a BLEU-4 score of 0.811 and a METEOR score of 0.569 for captioning. Experimental results demonstrate that GNN-ViTCap outperforms state of the art approaches, offering a reliable and efficient solution for microscopy based patient diagnosis.

  • 5 authors
·
Jul 9, 2025

Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification

A large-scale labeled dataset is a key factor for the success of supervised deep learning in computer vision. However, a limited number of annotated data is very common, especially in ophthalmic image analysis, since manual annotation is time-consuming and labor-intensive. Self-supervised learning (SSL) methods bring huge opportunities for better utilizing unlabeled data, as they do not need massive annotations. With an attempt to use as many as possible unlabeled ophthalmic images, it is necessary to break the dimension barrier, simultaneously making use of both 2D and 3D images. In this paper, we propose a universal self-supervised Transformer framework, named Uni4Eye, to discover the inherent image property and capture domain-specific feature embedding in ophthalmic images. Uni4Eye can serve as a global feature extractor, which builds its basis on a Masked Image Modeling task with a Vision Transformer (ViT) architecture. We employ a Unified Patch Embedding module to replace the origin patch embedding module in ViT for jointly processing both 2D and 3D input images. Besides, we design a dual-branch multitask decoder module to simultaneously perform two reconstruction tasks on the input image and its gradient map, delivering discriminative representations for better convergence. We evaluate the performance of our pre-trained Uni4Eye encoder by fine-tuning it on six downstream ophthalmic image classification tasks. The superiority of Uni4Eye is successfully established through comparisons to other state-of-the-art SSL pre-training methods.

  • 4 authors
·
Mar 9, 2022

Lost in Translation: Modern Neural Networks Still Struggle With Small Realistic Image Transformations

Deep neural networks that achieve remarkable performance in image classification have previously been shown to be easily fooled by tiny transformations such as a one pixel translation of the input image. In order to address this problem, two approaches have been proposed in recent years. The first approach suggests using huge datasets together with data augmentation in the hope that a highly varied training set will teach the network to learn to be invariant. The second approach suggests using architectural modifications based on sampling theory to deal explicitly with image translations. In this paper, we show that these approaches still fall short in robustly handling 'natural' image translations that simulate a subtle change in camera orientation. Our findings reveal that a mere one-pixel translation can result in a significant change in the predicted image representation for approximately 40% of the test images in state-of-the-art models (e.g. open-CLIP trained on LAION-2B or DINO-v2) , while models that are explicitly constructed to be robust to cyclic translations can still be fooled with 1 pixel realistic (non-cyclic) translations 11% of the time. We present Robust Inference by Crop Selection: a simple method that can be proven to achieve any desired level of consistency, although with a modest tradeoff with the model's accuracy. Importantly, we demonstrate how employing this method reduces the ability to fool state-of-the-art models with a 1 pixel translation to less than 5% while suffering from only a 1% drop in classification accuracy. Additionally, we show that our method can be easy adjusted to deal with circular shifts as well. In such case we achieve 100% robustness to integer shifts with state-of-the-art accuracy, and with no need for any further training.

  • 2 authors
·
Apr 10, 2024

Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training

Large-scale distributed training requires significant communication bandwidth for gradient exchange that limits the scalability of multi-node training, and requires expensive high-bandwidth network infrastructure. The situation gets even worse with distributed training on mobile devices (federated learning), which suffers from higher latency, lower throughput, and intermittent poor connections. In this paper, we find 99.9% of the gradient exchange in distributed SGD is redundant, and propose Deep Gradient Compression (DGC) to greatly reduce the communication bandwidth. To preserve accuracy during compression, DGC employs four methods: momentum correction, local gradient clipping, momentum factor masking, and warm-up training. We have applied Deep Gradient Compression to image classification, speech recognition, and language modeling with multiple datasets including Cifar10, ImageNet, Penn Treebank, and Librispeech Corpus. On these scenarios, Deep Gradient Compression achieves a gradient compression ratio from 270x to 600x without losing accuracy, cutting the gradient size of ResNet-50 from 97MB to 0.35MB, and for DeepSpeech from 488MB to 0.74MB. Deep gradient compression enables large-scale distributed training on inexpensive commodity 1Gbps Ethernet and facilitates distributed training on mobile. Code is available at: https://github.com/synxlin/deep-gradient-compression.

  • 5 authors
·
Dec 5, 2017

Safety Verification of Deep Neural Networks

Deep neural networks have achieved impressive experimental results in image classification, but can surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input image that cause the network to misclassify it. With potential applications including perception modules and end-to-end controllers for self-driving cars, this raises concerns about their safety. We develop a novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We focus on safety of image classification decisions with respect to image manipulations, such as scratches or changes to camera angle or lighting conditions that would result in the same class being assigned by a human, and define safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image. We enable exhaustive search of the region by employing discretisation, and propagate the analysis layer by layer. Our method works directly with the network code and, in contrast to existing methods, can guarantee that adversarial examples, if they exist, are found for the given region and family of manipulations. If found, adversarial examples can be shown to human testers and/or used to fine-tune the network. We implement the techniques using Z3 and evaluate them on state-of-the-art networks, including regularised and deep learning networks. We also compare against existing techniques to search for adversarial examples and estimate network robustness.

  • 4 authors
·
Oct 21, 2016

Tversky Neural Networks: Psychologically Plausible Deep Learning with Differentiable Tversky Similarity

Work in psychology has highlighted that the geometric model of similarity standard in deep learning is not psychologically plausible because its metric properties such as symmetry do not align with human perception. In contrast, Tversky (1977) proposed an axiomatic theory of similarity based on a representation of objects as sets of features, and their similarity as a function of common and distinctive features. However, this model has not been used in deep learning before, partly due to the challenge of incorporating discrete set operations. We develop a differentiable parameterization of Tversky's similarity that is learnable through gradient descent, and derive neural network building blocks such as the Tversky projection layer, which unlike the linear projection layer can model non-linear functions such as XOR. Through experiments with image recognition and language modeling, we show that the Tversky projection layer is a beneficial replacement for the linear projection layer, which employs geometric similarity. On the NABirds image classification task, a frozen ResNet-50 adapted with a Tversky projection layer achieves a 24.7% relative accuracy improvement over the linear layer adapter baseline. With Tversky projection layers, GPT-2's perplexity on PTB decreases by 7.5%, and its parameter count by 34.8%. Finally, we propose a unified interpretation of both projection layers as computing similarities of input stimuli to learned prototypes, for which we also propose a novel visualization technique highlighting the interpretability of Tversky projection layers. Our work offers a new paradigm for thinking about the similarity model implicit in deep learning, and designing networks that are interpretable under an established theory of psychological similarity.

  • 3 authors
·
May 20, 2025

Two Sides of The Same Coin: Bridging Deep Equilibrium Models and Neural ODEs via Homotopy Continuation

Deep Equilibrium Models (DEQs) and Neural Ordinary Differential Equations (Neural ODEs) are two branches of implicit models that have achieved remarkable success owing to their superior performance and low memory consumption. While both are implicit models, DEQs and Neural ODEs are derived from different mathematical formulations. Inspired by homotopy continuation, we establish a connection between these two models and illustrate that they are actually two sides of the same coin. Homotopy continuation is a classical method of solving nonlinear equations based on a corresponding ODE. Given this connection, we proposed a new implicit model called HomoODE that inherits the property of high accuracy from DEQs and the property of stability from Neural ODEs. Unlike DEQs, which explicitly solve an equilibrium-point-finding problem via Newton's methods in the forward pass, HomoODE solves the equilibrium-point-finding problem implicitly using a modified Neural ODE via homotopy continuation. Further, we developed an acceleration method for HomoODE with a shared learnable initial point. It is worth noting that our model also provides a better understanding of why Augmented Neural ODEs work as long as the augmented part is regarded as the equilibrium point to find. Comprehensive experiments with several image classification tasks demonstrate that HomoODE surpasses existing implicit models in terms of both accuracy and memory consumption.

  • 4 authors
·
Oct 14, 2023

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

We propose a technique for producing "visual explanations" for decisions from a large class of CNN-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept, flowing into the final convolutional layer to produce a coarse localization map highlighting important regions in the image for predicting the concept. Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers, (2) CNNs used for structured outputs, (3) CNNs used in tasks with multimodal inputs or reinforcement learning, without any architectural changes or re-training. We combine Grad-CAM with fine-grained visualizations to create a high-resolution class-discriminative visualization and apply it to off-the-shelf image classification, captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into their failure modes, (b) are robust to adversarial images, (c) outperform previous methods on localization, (d) are more faithful to the underlying model and (e) help achieve generalization by identifying dataset bias. For captioning and VQA, we show that even non-attention based models can localize inputs. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM helps users establish appropriate trust in predictions from models and show that Grad-CAM helps untrained users successfully discern a 'stronger' nodel from a 'weaker' one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/, along with a demo at http://gradcam.cloudcv.org, and a video at youtu.be/COjUB9Izk6E.

  • 6 authors
·
Oct 7, 2016

L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and Accurate Deep Learning

Data-parallel distributed training of deep neural networks (DNN) has gained very widespread adoption, but can still experience communication bottlenecks. To address this issue, entire families of compression mechanisms have been developed, including quantization, sparsification, and low-rank approximation, some of which are seeing significant practical adoption. Despite this progress, almost all known compression schemes apply compression uniformly across DNN layers, although layers are heterogeneous in terms of parameter count and their impact on model accuracy. In this work, we provide a general framework for adapting the degree of compression across the model's layers dynamically during training, improving the overall compression, while leading to substantial speedups, without sacrificing accuracy. Our framework, called L-GreCo, is based on an adaptive algorithm, which automatically picks the optimal compression parameters for model layers guaranteeing the best compression ratio while satisfying an error constraint. Extensive experiments over image classification and language modeling tasks shows that L-GreCo is effective across all existing families of compression methods, and achieves up to 2.5times training speedup and up to 5times compression improvement over efficient implementations of existing approaches, while recovering full accuracy. Moreover, L-GreCo is complementary to existing adaptive algorithms, improving their compression ratio by 50% and practical throughput by 66%.

  • 4 authors
·
Oct 31, 2022

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.

  • 6 authors
·
Jan 1, 2023

ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

Recently, channel attention mechanism has demonstrated to offer great potential in improving the performance of deep convolutional neural networks (CNNs). However, most existing methods dedicate to developing more sophisticated attention modules for achieving better performance, which inevitably increase model complexity. To overcome the paradox of performance and complexity trade-off, this paper proposes an Efficient Channel Attention (ECA) module, which only involves a handful of parameters while bringing clear performance gain. By dissecting the channel attention module in SENet, we empirically show avoiding dimensionality reduction is important for learning channel attention, and appropriate cross-channel interaction can preserve performance while significantly decreasing model complexity. Therefore, we propose a local cross-channel interaction strategy without dimensionality reduction, which can be efficiently implemented via 1D convolution. Furthermore, we develop a method to adaptively select kernel size of 1D convolution, determining coverage of local cross-channel interaction. The proposed ECA module is efficient yet effective, e.g., the parameters and computations of our modules against backbone of ResNet50 are 80 vs. 24.37M and 4.7e-4 GFLOPs vs. 3.86 GFLOPs, respectively, and the performance boost is more than 2% in terms of Top-1 accuracy. We extensively evaluate our ECA module on image classification, object detection and instance segmentation with backbones of ResNets and MobileNetV2. The experimental results show our module is more efficient while performing favorably against its counterparts.

  • 6 authors
·
Oct 7, 2019

Foveated Retinotopy Improves Classification and Localization in CNNs

From a falcon detecting prey to humans recognizing faces, many species exhibit extraordinary abilities in rapid visual localization and classification. These are made possible by a specialized retinal region called the fovea, which provides high acuity at the center of vision while maintaining lower resolution in the periphery. This distinctive spatial organization, preserved along the early visual pathway through retinotopic mapping, is fundamental to biological vision, yet remains largely unexplored in machine learning. Our study investigates how incorporating foveated retinotopy may benefit deep convolutional neural networks (CNNs) in image classification tasks. By implementing a foveated retinotopic transformation in the input layer of standard ResNet models and re-training them, we maintain comparable classification accuracy while enhancing the network's robustness to scale and rotational perturbations. Although this architectural modification introduces increased sensitivity to fixation point shifts, we demonstrate how this apparent limitation becomes advantageous: variations in classification probabilities across different gaze positions serve as effective indicators for object localization. Our findings suggest that foveated retinotopic mapping encodes implicit knowledge about visual object geometry, offering an efficient solution to the visual search problem - a capability crucial for many living species.

  • 3 authors
·
Feb 23, 2024

A Large-scale Empirical Study on Improving the Fairness of Deep Learning Models

Fairness has been a critical issue that affects the adoption of deep learning models in real practice. To improve model fairness, many existing methods have been proposed and evaluated to be effective in their own contexts. However, there is still no systematic evaluation among them for a comprehensive comparison under the same context, which makes it hard to understand the performance distinction among them, hindering the research progress and practical adoption of them. To fill this gap, this paper endeavours to conduct the first large-scale empirical study to comprehensively compare the performance of existing state-of-the-art fairness improving techniques. Specifically, we target the widely-used application scenario of image classification, and utilized three different datasets and five commonly-used performance metrics to assess in total 13 methods from diverse categories. Our findings reveal substantial variations in the performance of each method across different datasets and sensitive attributes, indicating over-fitting on specific datasets by many existing methods. Furthermore, different fairness evaluation metrics, due to their distinct focuses, yield significantly different assessment results. Overall, we observe that pre-processing methods and in-processing methods outperform post-processing methods, with pre-processing methods exhibiting the best performance. Our empirical study offers comprehensive recommendations for enhancing fairness in deep learning models. We approach the problem from multiple dimensions, aiming to provide a uniform evaluation platform and inspire researchers to explore more effective fairness solutions via a set of implications.

  • 4 authors
·
Jan 8, 2024

Deep Class-Incremental Learning: A Survey

Deep models, e.g., CNNs and Vision Transformers, have achieved impressive achievements in many vision tasks in the closed world. However, novel classes emerge from time to time in our ever-changing world, requiring a learning system to acquire new knowledge continually. For example, a robot needs to understand new instructions, and an opinion monitoring system should analyze emerging topics every day. Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally and build a universal classifier among all seen classes. Correspondingly, when directly training the model with new class instances, a fatal problem occurs -- the model tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades. There have been numerous efforts to tackle catastrophic forgetting in the machine learning community. In this paper, we survey comprehensively recent advances in deep class-incremental learning and summarize these methods from three aspects, i.e., data-centric, model-centric, and algorithm-centric. We also provide a rigorous and unified evaluation of 16 methods in benchmark image classification tasks to find out the characteristics of different algorithms empirically. Furthermore, we notice that the current comparison protocol ignores the influence of memory budget in model storage, which may result in unfair comparison and biased results. Hence, we advocate fair comparison by aligning the memory budget in evaluation, as well as several memory-agnostic performance measures. The source code to reproduce these evaluations is available at https://github.com/zhoudw-zdw/CIL_Survey/

  • 6 authors
·
Feb 7, 2023

Smooth Grad-CAM++: An Enhanced Inference Level Visualization Technique for Deep Convolutional Neural Network Models

Gaining insight into how deep convolutional neural network models perform image classification and how to explain their outputs have been a concern to computer vision researchers and decision makers. These deep models are often referred to as black box due to low comprehension of their internal workings. As an effort to developing explainable deep learning models, several methods have been proposed such as finding gradients of class output with respect to input image (sensitivity maps), class activation map (CAM), and Gradient based Class Activation Maps (Grad-CAM). These methods under perform when localizing multiple occurrences of the same class and do not work for all CNNs. In addition, Grad-CAM does not capture the entire object in completeness when used on single object images, this affect performance on recognition tasks. With the intention to create an enhanced visual explanation in terms of visual sharpness, object localization and explaining multiple occurrences of objects in a single image, we present Smooth Grad-CAM++ Simple demo: http://35.238.22.135:5000/, a technique that combines methods from two other recent techniques---SMOOTHGRAD and Grad-CAM++. Our Smooth Grad-CAM++ technique provides the capability of either visualizing a layer, subset of feature maps, or subset of neurons within a feature map at each instance at the inference level (model prediction process). After experimenting with few images, Smooth Grad-CAM++ produced more visually sharp maps with better localization of objects in the given input images when compared with other methods.

  • 4 authors
·
Aug 3, 2019

BottleFit: Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing

Although mission-critical applications require the use of deep neural networks (DNNs), their continuous execution at mobile devices results in a significant increase in energy consumption. While edge offloading can decrease energy consumption, erratic patterns in channel quality, network and edge server load can lead to severe disruption of the system's key operations. An alternative approach, called split computing, generates compressed representations within the model (called "bottlenecks"), to reduce bandwidth usage and energy consumption. Prior work has proposed approaches that introduce additional layers, to the detriment of energy consumption and latency. For this reason, we propose a new framework called BottleFit, which, in addition to targeted DNN architecture modifications, includes a novel training strategy to achieve high accuracy even with strong compression rates. We apply BottleFit on cutting-edge DNN models in image classification, and show that BottleFit achieves 77.1% data compression with up to 0.6% accuracy loss on ImageNet dataset, while state of the art such as SPINN loses up to 6% in accuracy. We experimentally measure the power consumption and latency of an image classification application running on an NVIDIA Jetson Nano board (GPU-based) and a Raspberry PI board (GPU-less). We show that BottleFit decreases power consumption and latency respectively by up to 49% and 89% with respect to (w.r.t.) local computing and by 37% and 55% w.r.t. edge offloading. We also compare BottleFit with state-of-the-art autoencoders-based approaches, and show that (i) BottleFit reduces power consumption and execution time respectively by up to 54% and 44% on the Jetson and 40% and 62% on Raspberry PI; (ii) the size of the head model executed on the mobile device is 83 times smaller. We publish the code repository for reproducibility of the results in this study.

  • 5 authors
·
Jan 7, 2022

EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case

The latest Deep Learning (DL) models for detection and classification have achieved an unprecedented performance over classical machine learning algorithms. However, DL models are black-box methods hard to debug, interpret, and certify. DL alone cannot provide explanations that can be validated by a non technical audience. In contrast, symbolic AI systems that convert concepts into rules or symbols -- such as knowledge graphs -- are easier to explain. However, they present lower generalisation and scaling capabilities. A very important challenge is to fuse DL representations with expert knowledge. One way to address this challenge, as well as the performance-explainability trade-off is by leveraging the best of both streams without obviating domain expert knowledge. We tackle such problem by considering the symbolic knowledge is expressed in form of a domain expert knowledge graph. We present the eXplainable Neural-symbolic learning (X-NeSyL) methodology, designed to learn both symbolic and deep representations, together with an explainability metric to assess the level of alignment of machine and human expert explanations. The ultimate objective is to fuse DL representations with expert domain knowledge during the learning process to serve as a sound basis for explainability. X-NeSyL methodology involves the concrete use of two notions of explanation at inference and training time respectively: 1) EXPLANet: Expert-aligned eXplainable Part-based cLAssifier NETwork Architecture, a compositional CNN that makes use of symbolic representations, and 2) SHAP-Backprop, an explainable AI-informed training procedure that guides the DL process to align with such symbolic representations in form of knowledge graphs. We showcase X-NeSyL methodology using MonuMAI dataset for monument facade image classification, and demonstrate that our approach improves explainability and performance.

  • 10 authors
·
Apr 24, 2021

3DCNN-DQN-RNN: A Deep Reinforcement Learning Framework for Semantic Parsing of Large-scale 3D Point Clouds

Semantic parsing of large-scale 3D point clouds is an important research topic in computer vision and remote sensing fields. Most existing approaches utilize hand-crafted features for each modality independently and combine them in a heuristic manner. They often fail to consider the consistency and complementary information among features adequately, which makes them difficult to capture high-level semantic structures. The features learned by most of the current deep learning methods can obtain high-quality image classification results. However, these methods are hard to be applied to recognize 3D point clouds due to unorganized distribution and various point density of data. In this paper, we propose a 3DCNN-DQN-RNN method which fuses the 3D convolutional neural network (CNN), Deep Q-Network (DQN) and Residual recurrent neural network (RNN) for an efficient semantic parsing of large-scale 3D point clouds. In our method, an eye window under control of the 3D CNN and DQN can localize and segment the points of the object class efficiently. The 3D CNN and Residual RNN further extract robust and discriminative features of the points in the eye window, and thus greatly enhance the parsing accuracy of large-scale point clouds. Our method provides an automatic process that maps the raw data to the classification results. It also integrates object localization, segmentation and classification into one framework. Experimental results demonstrate that the proposed method outperforms the state-of-the-art point cloud classification methods.

  • 7 authors
·
Jul 21, 2017

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224x224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102x faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.

  • 4 authors
·
Jun 18, 2014

Singing Voice Separation Using a Deep Convolutional Neural Network Trained by Ideal Binary Mask and Cross Entropy

Separating a singing voice from its music accompaniment remains an important challenge in the field of music information retrieval. We present a unique neural network approach inspired by a technique that has revolutionized the field of vision: pixel-wise image classification, which we combine with cross entropy loss and pretraining of the CNN as an autoencoder on singing voice spectrograms. The pixel-wise classification technique directly estimates the sound source label for each time-frequency (T-F) bin in our spectrogram image, thus eliminating common pre- and postprocessing tasks. The proposed network is trained by using the Ideal Binary Mask (IBM) as the target output label. The IBM identifies the dominant sound source in each T-F bin of the magnitude spectrogram of a mixture signal, by considering each T-F bin as a pixel with a multi-label (for each sound source). Cross entropy is used as the training objective, so as to minimize the average probability error between the target and predicted label for each pixel. By treating the singing voice separation problem as a pixel-wise classification task, we additionally eliminate one of the commonly used, yet not easy to comprehend, postprocessing steps: the Wiener filter postprocessing. The proposed CNN outperforms the first runner up in the Music Information Retrieval Evaluation eXchange (MIREX) 2016 and the winner of MIREX 2014 with a gain of 2.2702 ~ 5.9563 dB global normalized source to distortion ratio (GNSDR) when applied to the iKala dataset. An experiment with the DSD100 dataset on the full-tracks song evaluation task also shows that our model is able to compete with cutting-edge singing voice separation systems which use multi-channel modeling, data augmentation, and model blending.

  • 5 authors
·
Dec 4, 2018

E2GC: Energy-efficient Group Convolution in Deep Neural Networks

The number of groups (g) in group convolution (GConv) is selected to boost the predictive performance of deep neural networks (DNNs) in a compute and parameter efficient manner. However, we show that naive selection of g in GConv creates an imbalance between the computational complexity and degree of data reuse, which leads to suboptimal energy efficiency in DNNs. We devise an optimum group size model, which enables a balance between computational cost and data movement cost, thus, optimize the energy-efficiency of DNNs. Based on the insights from this model, we propose an "energy-efficient group convolution" (E2GC) module where, unlike the previous implementations of GConv, the group size (G) remains constant. Further, to demonstrate the efficacy of the E2GC module, we incorporate this module in the design of MobileNet-V1 and ResNeXt-50 and perform experiments on two GPUs, P100 and P4000. We show that, at comparable computational complexity, DNNs with constant group size (E2GC) are more energy-efficient than DNNs with a fixed number of groups (FgGC). For example, on P100 GPU, the energy-efficiency of MobileNet-V1 and ResNeXt-50 is increased by 10.8% and 4.73% (respectively) when E2GC modules substitute the FgGC modules in both the DNNs. Furthermore, through our extensive experimentation with ImageNet-1K and Food-101 image classification datasets, we show that the E2GC module enables a trade-off between generalization ability and representational power of DNN. Thus, the predictive performance of DNNs can be optimized by selecting an appropriate G. The code and trained models are available at https://github.com/iithcandle/E2GC-release.

  • 4 authors
·
Jun 26, 2020

PatternNet: Visual Pattern Mining with Deep Neural Network

Visual patterns represent the discernible regularity in the visual world. They capture the essential nature of visual objects or scenes. Understanding and modeling visual patterns is a fundamental problem in visual recognition that has wide ranging applications. In this paper, we study the problem of visual pattern mining and propose a novel deep neural network architecture called PatternNet for discovering these patterns that are both discriminative and representative. The proposed PatternNet leverages the filters in the last convolution layer of a convolutional neural network to find locally consistent visual patches, and by combining these filters we can effectively discover unique visual patterns. In addition, PatternNet can discover visual patterns efficiently without performing expensive image patch sampling, and this advantage provides an order of magnitude speedup compared to most other approaches. We evaluate the proposed PatternNet subjectively by showing randomly selected visual patterns which are discovered by our method and quantitatively by performing image classification with the identified visual patterns and comparing our performance with the current state-of-the-art. We also directly evaluate the quality of the discovered visual patterns by leveraging the identified patterns as proposed objects in an image and compare with other relevant methods. Our proposed network and procedure, PatterNet, is able to outperform competing methods for the tasks described.

  • 4 authors
·
Mar 18, 2017

Backpropagation-free Training of Deep Physical Neural Networks

Recent years have witnessed the outstanding success of deep learning in various fields such as vision and natural language processing. This success is largely indebted to the massive size of deep learning models that is expected to increase unceasingly. This growth of the deep learning models is accompanied by issues related to their considerable energy consumption, both during the training and inference phases, as well as their scalability. Although a number of work based on unconventional physical systems have been proposed which addresses the issue of energy efficiency in the inference phase, efficient training of deep learning models has remained unaddressed. So far, training of digital deep learning models mainly relies on backpropagation, which is not suitable for physical implementation as it requires perfect knowledge of the computation performed in the so-called forward pass of the neural network. Here, we tackle this issue by proposing a simple deep neural network architecture augmented by a biologically plausible learning algorithm, referred to as "model-free forward-forward training". The proposed architecture enables training deep physical neural networks consisting of layers of physical nonlinear systems, without requiring detailed knowledge of the nonlinear physical layers' properties. We show that our method outperforms state-of-the-art hardware-aware training methods by improving training speed, decreasing digital computations, and reducing power consumption in physical systems. We demonstrate the adaptability of the proposed method, even in systems exposed to dynamic or unpredictable external perturbations. To showcase the universality of our approach, we train diverse wave-based physical neural networks that vary in the underlying wave phenomenon and the type of non-linearity they use, to perform vowel and image classification tasks experimentally.

  • 5 authors
·
Apr 20, 2023

Adaptive Ensemble Learning: Boosting Model Performance through Intelligent Feature Fusion in Deep Neural Networks

In this paper, we present an Adaptive Ensemble Learning framework that aims to boost the performance of deep neural networks by intelligently fusing features through ensemble learning techniques. The proposed framework integrates ensemble learning strategies with deep learning architectures to create a more robust and adaptable model capable of handling complex tasks across various domains. By leveraging intelligent feature fusion methods, the Adaptive Ensemble Learning framework generates more discriminative and effective feature representations, leading to improved model performance and generalization capabilities. We conducted extensive experiments and evaluations on several benchmark datasets, including image classification, object detection, natural language processing, and graph-based learning tasks. The results demonstrate that the proposed framework consistently outperforms baseline models and traditional feature fusion techniques, highlighting its effectiveness in enhancing deep learning models' performance. Furthermore, we provide insights into the impact of intelligent feature fusion on model performance and discuss the potential applications of the Adaptive Ensemble Learning framework in real-world scenarios. The paper also explores the design and implementation of adaptive ensemble models, ensemble training strategies, and meta-learning techniques, which contribute to the framework's versatility and adaptability. In conclusion, the Adaptive Ensemble Learning framework represents a significant advancement in the field of feature fusion and ensemble learning for deep neural networks, with the potential to transform a wide range of applications across multiple domains.

  • 1 authors
·
Apr 4, 2023

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning

Tiny deep learning on microcontroller units (MCUs) is challenging due to the limited memory size. We find that the memory bottleneck is due to the imbalanced memory distribution in convolutional neural network (CNN) designs: the first several blocks have an order of magnitude larger memory usage than the rest of the network. To alleviate this issue, we propose a generic patch-by-patch inference scheduling, which operates only on a small spatial region of the feature map and significantly cuts down the peak memory. However, naive implementation brings overlapping patches and computation overhead. We further propose network redistribution to shift the receptive field and FLOPs to the later stage and reduce the computation overhead. Manually redistributing the receptive field is difficult. We automate the process with neural architecture search to jointly optimize the neural architecture and inference scheduling, leading to MCUNetV2. Patch-based inference effectively reduces the peak memory usage of existing networks by 4-8x. Co-designed with neural networks, MCUNetV2 sets a record ImageNet accuracy on MCU (71.8%), and achieves >90% accuracy on the visual wake words dataset under only 32kB SRAM. MCUNetV2 also unblocks object detection on tiny devices, achieving 16.9% higher mAP on Pascal VOC compared to the state-of-the-art result. Our study largely addressed the memory bottleneck in tinyML and paved the way for various vision applications beyond image classification.

  • 5 authors
·
Oct 28, 2021

Reduced Precision Floating-Point Optimization for Deep Neural Network On-Device Learning on MicroControllers

Enabling On-Device Learning (ODL) for Ultra-Low-Power Micro-Controller Units (MCUs) is a key step for post-deployment adaptation and fine-tuning of Deep Neural Network (DNN) models in future TinyML applications. This paper tackles this challenge by introducing a novel reduced precision optimization technique for ODL primitives on MCU-class devices, leveraging the State-of-Art advancements in RISC-V RV32 architectures with support for vectorized 16-bit floating-point (FP16) Single-Instruction Multiple-Data (SIMD) operations. Our approach for the Forward and Backward steps of the Back-Propagation training algorithm is composed of specialized shape transform operators and Matrix Multiplication (MM) kernels, accelerated with parallelization and loop unrolling. When evaluated on a single training step of a 2D Convolution layer, the SIMD-optimized FP16 primitives result up to 1.72times faster than the FP32 baseline on a RISC-V-based 8+1-core MCU. An average computing efficiency of 3.11 Multiply and Accumulate operations per clock cycle (MAC/clk) and 0.81 MAC/clk is measured for the end-to-end training tasks of a ResNet8 and a DS-CNN for Image Classification and Keyword Spotting, respectively -- requiring 17.1 ms and 6.4 ms on the target platform to compute a training step on a single sample. Overall, our approach results more than two orders of magnitude faster than existing ODL software frameworks for single-core MCUs and outperforms by 1.6 times previous FP32 parallel implementations on a Continual Learning setup.

  • 4 authors
·
May 30, 2023

Revisiting Unreasonable Effectiveness of Data in Deep Learning Era

The success of deep learning in vision can be attributed to: (a) models with high capacity; (b) increased computational power; and (c) availability of large-scale labeled data. Since 2012, there have been significant advances in representation capabilities of the models and computational capabilities of GPUs. But the size of the biggest dataset has surprisingly remained constant. What will happen if we increase the dataset size by 10x or 100x? This paper takes a step towards clearing the clouds of mystery surrounding the relationship between `enormous data' and visual deep learning. By exploiting the JFT-300M dataset which has more than 375M noisy labels for 300M images, we investigate how the performance of current vision tasks would change if this data was used for representation learning. Our paper delivers some surprising (and some expected) findings. First, we find that the performance on vision tasks increases logarithmically based on volume of training data size. Second, we show that representation learning (or pre-training) still holds a lot of promise. One can improve performance on many vision tasks by just training a better base model. Finally, as expected, we present new state-of-the-art results for different vision tasks including image classification, object detection, semantic segmentation and human pose estimation. Our sincere hope is that this inspires vision community to not undervalue the data and develop collective efforts in building larger datasets.

  • 4 authors
·
Jul 10, 2017