new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Extremely Dense Gas around Little Red Dots and High-redshift Active Galactic Nuclei: A Non-stellar Origin of the Balmer Break and Absorption Features

The James Webb Space Telescope (JWST) has uncovered low-luminosity active galactic nuclei (AGNs) at high redshifts of zgtrsim 4-7, powered by accreting black holes (BHs) with masses of sim 10^{6-8}~M_odot. One remarkable distinction of these JWST-identified AGNs, compared to their low-redshift counterparts, is that at least sim 20% of them present Halpha and/or Hbeta absorption, which must be associated with extremely dense (gtrsim 10^9~{rm cm}^{-3}) gas in the broad-line region or its immediate surroundings. These Balmer absorption features unavoidably imply the presence of a Balmer break caused by the same dense gas. In this Letter, we quantitatively demonstrate that a Balmer break can form in AGN spectra without stellar components, when the accretion disk is heavily embedded in dense neutral gas clumps with densities of sim 10^{9-11}~{rm cm}^{-3}, where hydrogen atoms are collisionally excited to the n=2 states and effectively absorb the AGN continuum at the bluer side of the Balmer limit. The non-stellar origin of a Balmer break offers a potential solution to the large stellar masses and densities inferred for little red dots (LRDs) when assuming that their continuum is primarily due to stellar light. Our calculations indicate that the observed Balmer absorption blueshifted by a few hundreds {rm km~s}^{-1} suggests the presence of dense outflows in the nucleus at rates exceeding the Eddington value. Other spectral features such as higher equivalent widths of broad Halpha emission and presence of OI lines observed in high-redshift AGNs including LRDs align with the predicted signatures of a dense super-Eddington accretion disk.

  • 2 authors
·
Sep 12, 2024

ALMA observations of massive clouds in the central molecular zone: slim filaments tracing parsec-scale shocks

The central molecular zone (CMZ) of our Galaxy exhibits widespread emission from SiO and various complex organic molecules (COMs), yet the exact origin of such emission is uncertain. Here we report the discovery of a unique class of long (>0.5 pc) and narrow (<0.03 pc) filaments in the emission of SiO 5-4 and eight additional molecular lines, including several COMs, in our ALMA 1.3 mm spectral line observations toward two massive molecular clouds in the CMZ, which we name as slim filaments. However, these filaments are not detected in the 1.3 mm continuum at the 5sigma level. Their line-of-sight velocities are coherent and inconsistent with being outflows. The column densities and relative abundances of the detected molecules are statistically similar to those in protostellar outflows but different from those in dense cores within the same clouds. Turbulent pressure in these filaments dominates over self gravity and leads to hydrostatic inequilibrium, indicating that they are a different class of objects than the dense gas filaments in dynamical equilibrium ubiquitously found in nearby molecular clouds. We argue that these newly detected slim filaments are associated with parsec-scale shocks, likely arising from dynamic interactions between shock waves and molecular clouds. The dissipation of the slim filaments may replenish SiO and COMs in the interstellar medium and lead to their widespread emission in the CMZ.

  • 25 authors
·
Feb 6, 2025