- An Approximation Algorithm for Monotone Submodular Cost Allocation In this paper, we consider the minimum submodular cost allocation (MSCA) problem. The input of MSCA is k non-negative submodular functions f_1,ldots,f_k on the ground set N given by evaluation oracles, and the goal is to partition N into k (possibly empty) sets X_1,ldots,X_k so that sum_{i=1}^k f_i(X_i) is minimized. In this paper, we focus on the case when f_1,ldots,f_k are monotone (denoted by Mono-MSCA). We provide a natural LP-relaxation for Mono-MSCA, which is equivalent to the convex program relaxation introduced by Chekuri and Ene. We show that the integrality gap of the LP-relaxation is at most k/2, which yields a k/2-approximation algorithm for Mono-MSCA. We also show that the integrality gap of the LP-relaxation is at least k/2-epsilon for any constant epsilon>0 when k is fixed. 1 authors · Nov 1
- Towards Foundation Models for Mixed Integer Linear Programming Mixed Integer Linear Programming (MILP) is essential for modeling complex decision-making problems but faces challenges in computational tractability and requires expert formulation. Current deep learning approaches for MILP focus on specific problem classes and do not generalize to unseen classes. To address this shortcoming, we take a foundation model training approach, where we train a single deep learning model on a diverse set of MILP problems to generalize across problem classes. As existing datasets for MILP lack diversity and volume, we introduce MILP-Evolve, a novel LLM-based evolutionary framework that is capable of generating a large set of diverse MILP classes with an unlimited amount of instances. We study our methodology on three key learning tasks that capture diverse aspects of MILP: (1) integrality gap prediction, (2) learning to branch, and (3) a new task of aligning MILP instances with natural language descriptions. Our empirical results show that models trained on the data generated by MILP-Evolve achieve significant improvements on unseen problems, including MIPLIB benchmarks. Our work highlights the potential of moving towards a foundation model approach for MILP that can generalize to a broad range of MILP applications. Our code and data are publicly available at https://github.com/microsoft/OptiGuide. 5 authors · Oct 10, 2024 1
- Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs We study the approximability of an existing framework for clustering edge-colored hypergraphs, which is closely related to chromatic correlation clustering and is motivated by machine learning and data mining applications where the goal is to cluster a set of objects based on multiway interactions of different categories or types. We present improved approximation guarantees based on linear programming, and show they are tight by proving a matching integrality gap. Our results also include new approximation hardness results, a combinatorial 2-approximation whose runtime is linear in the hypergraph size, and several new connections to well-studied objectives such as vertex cover and hypergraph multiway cut. 1 authors · Aug 12, 2022