new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

An Architecture for Meeting Quality-of-Service Requirements in Multi-User Quantum Networks

Quantum communication can enhance internet technology by enabling novel applications that are provably impossible classically. The successful execution of such applications relies on the generation of quantum entanglement between different users of the network which meets stringent performance requirements. Alongside traditional metrics such as throughput and jitter, one must ensure the generated entanglement is of sufficiently high quality. Meeting such performance requirements demands a careful orchestration of many devices in the network, giving rise to a fundamentally new scheduling problem. Furthermore, technological limitations of near-term quantum devices impose significant constraints on scheduling methods hoping to meet performance requirements. In this work, we propose the first end-to-end design of a centralized quantum network with multiple users that orchestrates the delivery of entanglement which meets quality-of-service (QoS) requirements of applications. We achieve this by using a centrally constructed schedule that manages usage of devices and ensures the coordinated execution of different quantum operations throughout the network. We use periodic task scheduling and resource-constrained project scheduling techniques, including a novel heuristic, to construct the schedules. Our simulations of four small networks using hardware-validated network parameters, and of a real-world fiber topology using futuristic parameters, illustrate trade-offs between traditional and quantum performance metrics.

  • 2 authors
·
Nov 25, 2021

Outdoor-to-Indoor 28 GHz Wireless Measurements in Manhattan: Path Loss, Environmental Effects, and 90% Coverage

Outdoor-to-indoor (OtI) signal propagation further challenges the already tight link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWave scenarios at 28 GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements. In total, 43 OtI scenarios were measured in West Harlem, New York City, covering seven highly diverse buildings. The measured OtI path gain can vary by up to 40 dB for a given link distance, and the empirical path gain model for all data shows an average of 30 dB excess loss over free space at distances beyond 50 m, with an RMS fitting error of 11.7 dB. The type of glass is found to be the single dominant feature for OtI loss, with 20 dB observed difference between empirical path gain models for scenarios with low-loss and high-loss glass. The presence of scaffolding, tree foliage, or elevated subway tracks, as well as difference in floor height are each found to have an impact between 5-10 dB. We show that for urban buildings with high-loss glass, OtI coverage can support 500 Mbps for 90% of indoor user equipment (UEs) with a base station (BS) antenna placed up to 49 m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.5/1.2 Gbps are possible from a BS 68/175 m away from the school building, when a line-of-sight path is available. We expect these results to be useful for the deployment of mmWave networks in dense urban environments as well as the development of relevant scheduling and beam management algorithms.

  • 15 authors
·
May 19, 2022

Discovering Heuristics with Large Language Models (LLMs) for Mixed-Integer Programs: Single-Machine Scheduling

Our study contributes to the scheduling and combinatorial optimization literature with new heuristics discovered by leveraging the power of Large Language Models (LLMs). We focus on the single-machine total tardiness (SMTT) problem, which aims to minimize total tardiness by sequencing n jobs on a single processor without preemption, given processing times and due dates. We develop and benchmark two novel LLM-discovered heuristics, the EDD Challenger (EDDC) and MDD Challenger (MDDC), inspired by the well-known Earliest Due Date (EDD) and Modified Due Date (MDD) rules. In contrast to prior studies that employed simpler rule-based heuristics, we evaluate our LLM-discovered algorithms using rigorous criteria, including optimality gaps and solution time derived from a mixed-integer programming (MIP) formulation of SMTT. We compare their performance against state-of-the-art heuristics and exact methods across various job sizes (20, 100, 200, and 500 jobs). For instances with more than 100 jobs, exact methods such as MIP and dynamic programming become computationally intractable. Up to 500 jobs, EDDC improves upon the classic EDD rule and another widely used algorithm in the literature. MDDC consistently outperforms traditional heuristics and remains competitive with exact approaches, particularly on larger and more complex instances. This study shows that human-LLM collaboration can produce scalable, high-performing heuristics for NP-hard constrained combinatorial optimization, even under limited resources when effectively configured.

  • 4 authors
·
Oct 27, 2025

LABIIUM: AI-Enhanced Zero-configuration Measurement Automation System

The complexity of laboratory environments requires solutions that simplify instrument interaction and enhance measurement automation. Traditional tools often require configuration, software, and programming skills, creating barriers to productivity. Previous approaches, including dedicated software suites and custom scripts, frequently fall short in providing user-friendly solutions that align with programming practices. We present LABIIUM, an AI-enhanced, zero-configuration measurement automation system designed to streamline experimental workflows and improve user productivity. LABIIUM integrates an AI assistant powered by Large Language Models (LLMs) to generate code. LABIIUM's Lab-Automation-Measurement Bridges (LAMBs) enable seamless instrument connectivity using standard tools such as VSCode and Python, eliminating setup overhead. To demonstrate its capabilities, we conducted experiments involving the measurement of the parametric transfer curve of a simple two-transistor inverting amplifier with a current source load. The AI assistant was evaluated using different prompt scenarios and compared with multiple models, including Claude Sonnet 3.5, Gemini Pro 1.5, and GPT-4o. An expert solution implementing the Gradient-Weighted Adaptive Stochastic Sampling (GWASS) method was used as a baseline. The solutions generated by the AI assistant were compared with the expert solution and a uniform linear sweep baseline with 10,000 points. The graph results show that the LLMs were able to successfully complete the most basic uniform sweep, but LLMs were unable to develop adaptive sweeping algorithms to compete with GWASS. The evaluation underscores LABIIUM's ability to enhance laboratory productivity and support digital transformation in research and industry, and emphasizes the future work required to improve LLM performance in Electronic Measurement Science Tasks.

  • 2 authors
·
Dec 6, 2024

Towards VM Rescheduling Optimization Through Deep Reinforcement Learning

Modern industry-scale data centers need to manage a large number of virtual machines (VMs). Due to the continual creation and release of VMs, many small resource fragments are scattered across physical machines (PMs). To handle these fragments, data centers periodically reschedule some VMs to alternative PMs, a practice commonly referred to as VM rescheduling. Despite the increasing importance of VM rescheduling as data centers grow in size, the problem remains understudied. We first show that, unlike most combinatorial optimization tasks, the inference time of VM rescheduling algorithms significantly influences their performance, due to dynamic VM state changes during this period. This causes existing methods to scale poorly. Therefore, we develop a reinforcement learning system for VM rescheduling, VM2RL, which incorporates a set of customized techniques, such as a two-stage framework that accommodates diverse constraints and workload conditions, a feature extraction module that captures relational information specific to rescheduling, as well as a risk-seeking evaluation enabling users to optimize the trade-off between latency and accuracy. We conduct extensive experiments with data from an industry-scale data center. Our results show that VM2RL can achieve a performance comparable to the optimal solution but with a running time of seconds. Code and datasets are open-sourced: https://github.com/zhykoties/VMR2L_eurosys, https://drive.google.com/drive/folders/1PfRo1cVwuhH30XhsE2Np3xqJn2GpX5qy.

  • 9 authors
·
May 22, 2025

Flying Triangulation - towards the 3D movie camera

Flying Triangulation sensors enable a free-hand and motion-robust 3D data acquisition of complex shaped objects. The measurement principle is based on a multi-line light-sectioning approach and uses sophisticated algorithms for real-time registration (S. Ettl et al., Appl. Opt. 51 (2012) 281-289). As "single-shot principle", light sectioning enables the option to get surface data from one single camera exposure. But there is a drawback: A pixel-dense measurement is not possible because of fundamental information-theoretical reasons. By "pixel-dense" we understand that each pixel displays individually measured distance information, neither interpolated from its neighbour pixels nor using lateral context information. Hence, for monomodal single-shot principles, the 3D data generated from one 2D raw image display a significantly lower space-bandwidth than the camera permits. This is the price one must pay for motion robustness. Currently, our sensors project about 10 lines (each with 1000 pixels), reaching an considerable lower data efficiency than theoretically possible for a single-shot sensor. Our aim is to push Flying Triangulation to its information-theoretical limits. Therefore, the line density as well as the measurement depth needs to be significantly increased. This causes serious indexing ambiguities. On the road to a single-shot 3D movie camera, we are working on solutions to overcome the problem of false line indexing by utilizing yet unexploited information. We will present several approaches and will discuss profound information-theoretical questions about the information efficiency of 3D sensors.

  • 4 authors
·
May 17, 2013

REX: Revisiting Budgeted Training with an Improved Schedule

Deep learning practitioners often operate on a computational and monetary budget. Thus, it is critical to design optimization algorithms that perform well under any budget. The linear learning rate schedule is considered the best budget-aware schedule, as it outperforms most other schedules in the low budget regime. On the other hand, learning rate schedules -- such as the 30-60-90 step schedule -- are known to achieve high performance when the model can be trained for many epochs. Yet, it is often not known a priori whether one's budget will be large or small; thus, the optimal choice of learning rate schedule is made on a case-by-case basis. In this paper, we frame the learning rate schedule selection problem as a combination of i) selecting a profile (i.e., the continuous function that models the learning rate schedule), and ii) choosing a sampling rate (i.e., how frequently the learning rate is updated/sampled from this profile). We propose a novel profile and sampling rate combination called the Reflected Exponential (REX) schedule, which we evaluate across seven different experimental settings with both SGD and Adam optimizers. REX outperforms the linear schedule in the low budget regime, while matching or exceeding the performance of several state-of-the-art learning rate schedules (linear, step, exponential, cosine, step decay on plateau, and OneCycle) in both high and low budget regimes. Furthermore, REX requires no added computation, storage, or hyperparameters.

  • 3 authors
·
Jul 9, 2021

TMIQ: Quantifying Test and Measurement Domain Intelligence in Large Language Models

The Test and Measurement domain, known for its strict requirements for accuracy and efficiency, is increasingly adopting Generative AI technologies to enhance the performance of data analysis, automation, and decision-making processes. Among these, Large Language Models (LLMs) show significant promise for advancing automation and precision in testing. However, the evaluation of LLMs in this specialized area remains insufficiently explored. To address this gap, we introduce the Test and Measurement Intelligence Quotient (TMIQ), a benchmark designed to quantitatively assess LLMs across a wide range of electronic engineering tasks. TMIQ offers a comprehensive set of scenarios and metrics for detailed evaluation, including SCPI command matching accuracy, ranked response evaluation, Chain-of-Thought Reasoning (CoT), and the impact of output formatting variations required by LLMs on performance. In testing various LLMs, our findings indicate varying levels of proficiency, with exact SCPI command match accuracy ranging from around 56% to 73%, and ranked matching first-position scores achieving around 33% for the best-performing model. We also assess token usage, cost-efficiency, and response times, identifying trade-offs between accuracy and operational efficiency. Additionally, we present a command-line interface (CLI) tool that enables users to generate datasets using the same methodology, allowing for tailored assessments of LLMs. TMIQ and the CLI tool provide a rigorous, reproducible means of evaluating LLMs for production environments, facilitating continuous monitoring and identifying strengths and areas for improvement, and driving innovation in their selections for applications within the Test and Measurement industry.

  • 2 authors
·
Mar 3, 2025

Priority Matters: Optimising Kubernetes Clusters Usage with Constraint-Based Pod Packing

Distributed applications employ Kubernetes for scalable, fault-tolerant deployments over computer clusters, where application components run in groups of containers called pods. The scheduler, at the heart of Kubernetes' architecture, determines the placement of pods given their priority and resource requirements on cluster nodes. To quickly allocate pods, the scheduler uses lightweight heuristics that can lead to suboptimal placements and resource fragmentation, preventing allocations of otherwise deployable pods on the available nodes. We propose the usage of constraint programming to find the optimal allocation of pods satisfying all their priorities and resource requests. Implementation-wise, our solution comes as a plug-in to the default scheduler that operates as a fallback mechanism when some pods cannot be allocated. Using the OR-Tools constraint solver, our experiments on small-to-mid-sized clusters indicate that, within a 1-second scheduling window, our approach places more higher-priority pods than the default scheduler (possibly demonstrating allocation optimality) in over 44\% of realisable allocation scenarios where the default scheduler fails, while certifying that the default scheduler's placement is already optimal in over 19\% of scenarios. With a 10-second window, our approach improves placements in over 73\% and still certifies that the default scheduler's placement is already optimal in over 19\% of scenarios.

  • 3 authors
·
Nov 11, 2025

Reinforcement Learning of Display Transfer Robots in Glass Flow Control Systems: A Physical Simulation-Based Approach

A flow control system is a critical concept for increasing the production capacity of manufacturing systems. To solve the scheduling optimization problem related to the flow control with the aim of improving productivity, existing methods depend on a heuristic design by domain human experts. Therefore, the methods require correction, monitoring, and verification by using real equipment. As system designs increase in complexity, the monitoring time increases, which decreases the probability of arriving at the optimal design. As an alternative approach to the heuristic design of flow control systems, the use of deep reinforcement learning to solve the scheduling optimization problem has been considered. Although the existing research on reinforcement learning has yielded excellent performance in some areas, the applicability of the results to actual FAB such as display and semiconductor manufacturing processes is not evident so far. To this end, we propose a method to implement a physical simulation environment and devise a feasible flow control system design using a transfer robot in display manufacturing through reinforcement learning. We present a model and parameter setting to build a virtual environment for different display transfer robots, and training methods of reinforcement learning on the environment to obtain an optimal scheduling of glass flow control systems. Its feasibility was verified by using different types of robots used in the actual process.

  • 3 authors
·
Oct 11, 2023

R-ConstraintBench: Evaluating LLMs on NP-Complete Scheduling

Effective scheduling under tight resource, timing, and operational constraints underpins large-scale planning across sectors such as capital projects, manufacturing, logistics, and IT fleet transitions. However, the reliability of large language models (LLMs) when reasoning under high-constraint regimes is insufficiently characterized. To address this gap, we present R-ConstraintBench, a scalable framework that evaluates models on Resource-Constrained Project Scheduling Problems (RCPSP), an NP-Complete feasibility class, while difficulty increases via linear growth in constraints. R-ConstraintBench incrementally increases non-redundant precedence constraints in Directed Acyclic Graphs (DAGs) and then introduces downtime, temporal windows, and disjunctive constraints. As an illustrative example, we instantiate the benchmark in a data center migration setting and evaluate multiple LLMs using feasibility and error analysis, identifying degradation thresholds and constraint types most associated with failure. Empirically, strong models are near-ceiling on precedence-only DAGs, but feasibility performance collapses when downtime, temporal windows, and disjunctive constraints interact, implicating constraint interaction, not graph depth, as the principal bottleneck. Performance on clean synthetic ramps also does not guarantee transfer to domain-grounded scenarios, underscoring limited generalization.

  • 2 authors
·
Aug 20, 2025

Modeling Performance of Data Collection Systems for High-Energy Physics

Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.

  • 3 authors
·
Jun 27, 2024