- Apparate: Evading Memory Hierarchy with GodSpeed Wireless-on-Chip The rapid advancements in memory systems, CPU technology, and emerging technologies herald a transformative potential in computing, promising to revolutionize memory hierarchies. Innovations in DDR memory are delivering unprecedented bandwidth, while advancements in on-chip wireless technology are reducing size and increasing speed. The introduction of godspeed wireless transceivers on chip, alongside near high-speed DRAM, is poised to directly facilitate memory requests. This integration suggests the potential for eliminating traditional memory hierarchies, offering a new paradigm in computing efficiency and speed. These developments indicate a near-future where computing systems are significantly more responsive and powerful, leveraging direct, high-speed memory access mechanisms. 2 authors · Apr 23, 2024
- BLaST: High Performance Inference and Pretraining using BLock Sparse Transformers The energy consumption of large-scale ML models is dominated by data movement - shuffling billions of parameters across memory hierarchies and data centers. Effective sparsification to prune redundant parameters is still challenging: existing methods incur significant accuracy degradation, performance overhead, or both. We introduce (Bl)ock (a)nd (S)parse (T)ransformers (BLaST), a general, robust, and reliable sparsification method applicable to linear layers in all settings. Our method iteratively sparsifies weight matrices into a block sparsity pattern suitable for efficient sparse matrix-matrix (SpMM) multiplication. BLaST achieves up to 95% sparsity in MLP weights with negligible accuracy loss. Our fused, highly optimized Sparse MLP kernel delivers up to 16.7x speedup over dense MLPs across 9 architectures and 8 datasets, resulting in up to 1.6x inference speedup, 1.11x pretraining speedup and up to 3.12x inference memory usage reduction. BLaST enables the next generation of large-scale AI systems by reducing energy use, memory footprint, and latency. 7 authors · Jul 3, 2025
- STARK: Strategic Team of Agents for Refining Kernels The efficiency of GPU kernels is central to the progress of modern AI, yet optimizing them remains a difficult and labor-intensive task due to complex interactions between memory hierarchies, thread scheduling, and hardware-specific characteristics. While recent advances in large language models (LLMs) provide new opportunities for automated code generation, existing approaches largely treat LLMs as single-shot generators or naive refinement tools, limiting their effectiveness in navigating the irregular kernel optimization landscape. We introduce an LLM agentic framework for GPU kernel optimization that systematically explores the design space through multi-agent collaboration, grounded instruction, dynamic context management, and strategic search. This framework mimics the workflow of expert engineers, enabling LLMs to reason about hardware trade-offs, incorporate profiling feedback, and refine kernels iteratively. We evaluate our approach on KernelBench, a benchmark for LLM-based kernel optimization, and demonstrate substantial improvements over baseline agents: our system produces correct solutions where baselines often fail, and achieves kernels with up to 16x faster runtime performance. These results highlight the potential of agentic LLM frameworks to advance fully automated, scalable GPU kernel optimization. 8 authors · Oct 19, 2025
- Long Short-Term Memory Over Tree Structures The chain-structured long short-term memory (LSTM) has showed to be effective in a wide range of problems such as speech recognition and machine translation. In this paper, we propose to extend it to tree structures, in which a memory cell can reflect the history memories of multiple child cells or multiple descendant cells in a recursive process. We call the model S-LSTM, which provides a principled way of considering long-distance interaction over hierarchies, e.g., language or image parse structures. We leverage the models for semantic composition to understand the meaning of text, a fundamental problem in natural language understanding, and show that it outperforms a state-of-the-art recursive model by replacing its composition layers with the S-LSTM memory blocks. We also show that utilizing the given structures is helpful in achieving a performance better than that without considering the structures. 3 authors · Mar 16, 2015
6 The Personalization Trap: How User Memory Alters Emotional Reasoning in LLMs When an AI assistant remembers that Sarah is a single mother working two jobs, does it interpret her stress differently than if she were a wealthy executive? As personalized AI systems increasingly incorporate long-term user memory, understanding how this memory shapes emotional reasoning is critical. We investigate how user memory affects emotional intelligence in large language models (LLMs) by evaluating 15 models on human validated emotional intelligence tests. We find that identical scenarios paired with different user profiles produce systematically divergent emotional interpretations. Across validated user independent emotional scenarios and diverse user profiles, systematic biases emerged in several high-performing LLMs where advantaged profiles received more accurate emotional interpretations. Moreover, LLMs demonstrate significant disparities across demographic factors in emotion understanding and supportive recommendations tasks, indicating that personalization mechanisms can embed social hierarchies into models emotional reasoning. These results highlight a key challenge for memory enhanced AI: systems designed for personalization may inadvertently reinforce social inequalities. Amazon · Oct 10, 2025 4
- Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compiler optimization, etc.) quickly results in a combinatorial explosion of design space. This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role assigned to each agent. We test this hypothesis by designing domain-specific DRAM memory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search. 7 authors · Nov 29, 2022