- Classification of motor faults based on transmission coefficient and reflection coefficient of omni-directional antenna using DCNN The most commonly used electrical rotary machines in the field are induction machines. In this paper, we propose an antenna based approach for the classification of motor faults in induction motors using the reflection coefficient S11 and the transmission coefficient S21 of the antenna. The spectrograms of S11 and S21 are seen to possess unique signatures for various fault conditions that are used for the classification. To learn the required characteristics and classification boundaries, deep convolution neural network (DCNN) is applied to the spectrogram of the S-parameter. DCNN has been found to reach classification accuracy 93% using S11, 98.1% using S21 and 100% using both S11 and S21. The effect of antenna operating frequency, its location and duration of signal on the classification accuracy is also presented and discussed. 3 authors · Nov 3, 2025
2 Fault Diagnosis on Induction Motor using Machine Learning and Signal Processing The detection and identification of induction motor faults using machine learning and signal processing is a valuable approach to avoiding plant disturbances and shutdowns in the context of Industry 4.0. In this work, we present a study on the detection and identification of induction motor faults using machine learning and signal processing with MATLAB Simulink. We developed a model of a three-phase induction motor in MATLAB Simulink to generate healthy and faulty motor data. The data collected included stator currents, rotor currents, input power, slip, rotor speed, and efficiency. We generated four faults in the induction motor: open circuit fault, short circuit fault, overload, and broken rotor bars. We collected a total of 150,000 data points with a 60-40% ratio of healthy to faulty motor data. We applied Fast Fourier Transform (FFT) to detect and identify healthy and unhealthy conditions and added a distinctive feature in our data. The generated dataset was trained different machine learning models. On comparing the accuracy of the models on the test set, we concluded that the Decision Tree algorithm performed the best with an accuracy of about 92%. Our study contributes to the literature by providing a valuable approach to fault detection and classification with machine learning models for industrial applications. 4 authors · Jan 27, 2024
1 Fault Analysis And Predictive Maintenance Of Induction Motor Using Machine Learning Induction motors are one of the most crucial electrical equipment and are extensively used in industries in a wide range of applications. This paper presents a machine learning model for the fault detection and classification of induction motor faults by using three phase voltages and currents as inputs. The aim of this work is to protect vital electrical components and to prevent abnormal event progression through early detection and diagnosis. This work presents a fast forward artificial neural network model to detect some of the commonly occurring electrical faults like overvoltage, under voltage, single phasing, unbalanced voltage, overload, ground fault. A separate model free monitoring system wherein the motor itself acts like a sensor is presented and the only monitored signals are the input given to the motor. Limits for current and voltage values are set for the faulty and healthy conditions, which is done by a classifier. Real time data from a 0.33 HP induction motor is used to train and test the neural network. The model so developed analyses the voltage and current values given at a particular instant and classifies the data into no fault or the specific fault. The model is then interfaced with a real motor to accurately detect and classify the faults so that further necessary action can be taken. 2 authors · Sep 15, 2024
1 MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation Robotic systems that aspire to operate in uninstrumented real-world environments must perceive the world directly via onboard sensing. Vision-based learning systems aim to eliminate the need for environment instrumentation by building an implicit understanding of the world based on raw pixels, but navigating the contact-rich high-dimensional search space from solely sparse visual reward signals significantly exacerbates the challenge of exploration. The applicability of such systems is thus typically restricted to simulated or heavily engineered environments since agent exploration in the real-world without the guidance of explicit state estimation and dense rewards can lead to unsafe behavior and safety faults that are catastrophic. In this study, we isolate the root causes behind these limitations to develop a system, called MoDem-V2, capable of learning contact-rich manipulation directly in the uninstrumented real world. Building on the latest algorithmic advancements in model-based reinforcement learning (MBRL), demo-bootstrapping, and effective exploration, MoDem-V2 can acquire contact-rich dexterous manipulation skills directly in the real world. We identify key ingredients for leveraging demonstrations in model learning while respecting real-world safety considerations -- exploration centering, agency handover, and actor-critic ensembles. We empirically demonstrate the contribution of these ingredients in four complex visuo-motor manipulation problems in both simulation and the real world. To the best of our knowledge, our work presents the first successful system for demonstration-augmented visual MBRL trained directly in the real world. Visit https://sites.google.com/view/modem-v2 for videos and more details. 4 authors · Sep 25, 2023
- High-density Electromyography for Effective Gesture-based Control of Physically Assistive Mobile Manipulators Injury to the cervical spinal cord can cause quadriplegia, impairing muscle function in all four limbs. People with impaired hand function and mobility encounter significant difficulties in carrying out essential self-care and household tasks. Despite the impairment of their neural drive, their volitional myoelectric activity is often partially preserved. High-density electromyography (HDEMG) can detect this myoelectric activity, which can serve as control inputs to assistive devices. Previous HDEMG-controlled robotic interfaces have primarily been limited to controlling table-mounted robot arms. These have constrained reach capabilities. Instead, the ability to control mobile manipulators, which have no such workspace constraints, could allow individuals with quadriplegia to perform a greater variety of assistive tasks, thus restoring independence and reducing caregiver workload. In this study, we introduce a non-invasive wearable HDEMG interface with real-time myoelectric hand gesture recognition, enabling both coarse and fine control over the intricate mobility and manipulation functionalities of an 8 degree-of-freedom mobile manipulator. Our evaluation, involving 13 participants engaging in challenging self-care and household activities, demonstrates the potential of our wearable HDEMG system to profoundly enhance user independence by enabling non-invasive control of a mobile manipulator. 4 authors · Dec 12, 2023
1 Machine Learning for UAV Propeller Fault Detection based on a Hybrid Data Generation Model This paper describes the development of an on-board data-driven system that can monitor and localize the fault in a quadrotor unmanned aerial vehicle (UAV) and at the same time, evaluate the degree of damage of the fault under real scenarios. To achieve offline training data generation, a hybrid approach is proposed for the development of a virtual data-generative model using a combination of data-driven models as well as well-established dynamic models that describe the kinematics of the UAV. To effectively represent the drop in performance of a faulty propeller, a variation of the deep neural network, a LSTM network is proposed. With the RPM of the propeller as input and based on the fault condition of the propeller, the proposed propeller model estimates the resultant torque and thrust. Then, flight datasets of the UAV under various fault scenarios are generated via simulation using the developed data-generative model. Lastly, a fault classifier using a CNN model is proposed to identify as well as evaluate the degree of damage to the damaged propeller. The scope of this paper focuses on the identification of faulty propellers and classification of the fault level for quadrotor UAVs using RPM as well as flight data. Doing so allows for early minor fault detection to prevent serious faults from occurring if the fault is left unrepaired. To further validate the workability of this approach outside of simulation, a real-flight test is conducted indoors. The real flight data is collected and a simulation to real sim-real test is conducted. Due to the imperfections in the build of our experimental UAV, a slight calibration approach to our simulation model is further proposed and the experimental results obtained show that our trained model can identify the location of propeller fault as well as the degree/type of damage. Currently, the diagnosis accuracy on the testing set is over 80%. 5 authors · Feb 3, 2023
1 Applying Dimensionality Reduction as Precursor to LSTM-CNN Models for Classifying Imagery and Motor Signals in ECoG-Based BCIs Motor impairments, frequently caused by neurological incidents like strokes or traumatic brain injuries, present substantial obstacles in rehabilitation therapy. This research aims to elevate the field by optimizing motor imagery classification algorithms within Brain-Computer Interfaces (BCIs). By improving the efficiency of BCIs, we offer a novel approach that holds significant promise for enhancing motor rehabilitation outcomes. Utilizing unsupervised techniques for dimensionality reduction, namely Uniform Manifold Approximation and Projection (UMAP) coupled with K-Nearest Neighbors (KNN), we evaluate the necessity of employing supervised methods such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs) for classification tasks. Importantly, participants who exhibited high KNN scores following UMAP dimensionality reduction also achieved high accuracy in supervised deep learning (DL) models. Due to individualized model requirements and massive neural training data, dimensionality reduction becomes an effective preprocessing step that minimizes the need for extensive data labeling and supervised deep learning techniques. This approach has significant implications not only for targeted therapies in motor dysfunction but also for addressing regulatory, safety, and reliability concerns in the rapidly evolving BCI field. 1 authors · Nov 22, 2023
1 Mid-flight Propeller Failure Detection and Control of Propeller-deficient Quadcopter using Reinforcement Learning Quadcopters can suffer from loss of propellers in mid-flight, thus requiring a need to have a system that detects single and multiple propeller failures and an adaptive controller that stabilizes the propeller-deficient quadcopter. This paper presents reinforcement learning based controllers for quadcopters with 4, 3, and 2 (opposing) functional propellers. The paper also proposes a neural network based propeller fault detection system to detect propeller loss and switch to the appropriate controller. The simulation results demonstrate a stable quadcopter with efficient waypoint tracking for all controllers. The detection system is able to detect propeller failure in a short time and stabilize the quadcopter. 3 authors · Feb 26, 2020