- Open Universal Arabic ASR Leaderboard In recent years, the enhanced capabilities of ASR models and the emergence of multi-dialect datasets have increasingly pushed Arabic ASR model development toward an all-dialect-in-one direction. This trend highlights the need for benchmarking studies that evaluate model performance on multiple dialects, providing the community with insights into models' generalization capabilities. In this paper, we introduce Open Universal Arabic ASR Leaderboard, a continuous benchmark project for open-source general Arabic ASR models across various multi-dialect datasets. We also provide a comprehensive analysis of the model's robustness, speaker adaptation, inference efficiency, and memory consumption. This work aims to offer the Arabic ASR community a reference for models' general performance and also establish a common evaluation framework for multi-dialectal Arabic ASR models. 3 authors · Dec 18, 2024
3 Overcoming Data Scarcity in Multi-Dialectal Arabic ASR via Whisper Fine-Tuning Although commercial Arabic automatic speech recognition (ASR) systems support Modern Standard Arabic (MSA), they struggle with dialectal speech. We investigate the effect of fine-tuning OpenAI's Whisper on five major Arabic dialects (Gulf, Levantine, Iraqi, Egyptian, Maghrebi) using Mozilla Common Voice for MSA and the MASC dataset for dialectal speech. We evaluate MSA training size effects, benefits of pre-training on MSA data, and dialect-specific versus dialect-pooled models. We find that small amounts of MSA fine-tuning data yield substantial improvements for smaller models, matching larger non-fine-tuned models. While MSA pre-training shows minimal benefit, suggesting limited shared features between MSA and dialects, our dialect-pooled models perform comparably to dialect-specific ones. This indicates that pooling dialectal data, when properly balanced, can help address data scarcity in low-resource ASR without significant performance loss. 3 authors · Jun 3, 2025 1
- ELYADATA & LIA at NADI 2025: ASR and ADI Subtasks This paper describes Elyadata \& LIA's joint submission to the NADI multi-dialectal Arabic Speech Processing 2025. We participated in the Spoken Arabic Dialect Identification (ADI) and multi-dialectal Arabic ASR subtasks. Our submission ranked first for the ADI subtask and second for the multi-dialectal Arabic ASR subtask among all participants. Our ADI system is a fine-tuned Whisper-large-v3 encoder with data augmentation. This system obtained the highest ADI accuracy score of 79.83\% on the official test set. For multi-dialectal Arabic ASR, we fine-tuned SeamlessM4T-v2 Large (Egyptian variant) separately for each of the eight considered dialects. Overall, we obtained an average WER and CER of 38.54\% and 14.53\%, respectively, on the test set. Our results demonstrate the effectiveness of large pre-trained speech models with targeted fine-tuning for Arabic speech processing. 5 authors · Nov 13, 2025