new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes

Recently, 3D Gaussian Splatting (3DGS) has revolutionized radiance field reconstruction, manifesting efficient and high-fidelity novel view synthesis. However, accurately representing surfaces, especially in large and complex scenarios, remains a significant challenge due to the unstructured nature of 3DGS. In this paper, we present CityGaussianV2, a novel approach for large-scale scene reconstruction that addresses critical challenges related to geometric accuracy and efficiency. Building on the favorable generalization capabilities of 2D Gaussian Splatting (2DGS), we address its convergence and scalability issues. Specifically, we implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence. To scale up, we introduce an elongation filter that mitigates Gaussian count explosion caused by 2DGS degeneration. Furthermore, we optimize the CityGaussian pipeline for parallel training, achieving up to 10times compression, at least 25% savings in training time, and a 50% decrease in memory usage. We also established standard geometry benchmarks under large-scale scenes. Experimental results demonstrate that our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs. The project page is available at https://dekuliutesla.github.io/CityGaussianV2/.

  • 5 authors
·
Nov 1, 2024 2

ElasWave: An Elastic-Native System for Scalable Hybrid-Parallel Training

Large-scale LLM pretraining now runs across 10^5--10^6 accelerators, making failures routine and elasticity mandatory. We posit that an elastic-native training system must jointly deliver (i) parameter consistency, (ii) low mean time to recovery (MTTR), (iii) high post-change throughput, and (iv) computation consistency. No prior system achieves all four simultaneously. To achieve these goals, we present ElasWave, which delivers per-step fault tolerance via multi-dimensional scheduling across graph, dataflow, DVFS, and RNG. ElasWave reshapes and reshards micro-batches while preserving the global batch size and gradient scale. It performs online pipeline resharding with asynchronous parameter migration and interleaves ZeRO partitions, reducing parameter recovery processes to disjoint rank-to-rank transfers. It further leverages DVFS to absorb pipeline bubbles and reshards RNG to keep computation consistency. Together, a dynamic communicator enables in-place communication group edits, while per-step in-memory snapshots support online verification and redistribution. We evaluate ElasWave on 96 NPUs and benchmark it against state-of-the-art baselines: throughput improves by 1.35times over ReCycle and 1.60times over TorchFT; communicator recovery completes within one second (up to 82times/3.6times faster than full/partial rebuilds); migration MTTR drops by as much as 51%; and convergence deviation is reduced by approximately 78%.

  • 19 authors
·
Oct 1, 2025

Optimizing Distributed Training on Frontier for Large Language Models

Large language models (LLMs) have demonstrated remarkable success as foundational models, benefiting various downstream applications through fine-tuning. Recent studies on loss scaling have demonstrated the superior performance of larger LLMs compared to their smaller counterparts. Nevertheless, training LLMs with billions of parameters poses significant challenges and requires considerable computational resources. For example, training a one trillion parameter GPT-style model on 20 trillion tokens requires a staggering 120 million exaflops of computation. This research explores efficient distributed training strategies to extract this computation from Frontier, the world's first exascale supercomputer dedicated to open science. We enable and investigate various model and data parallel training techniques, such as tensor parallelism, pipeline parallelism, and sharded data parallelism, to facilitate training a trillion-parameter model on Frontier. We empirically assess these techniques and their associated parameters to determine their impact on memory footprint, communication latency, and GPU's computational efficiency. We analyze the complex interplay among these techniques and find a strategy to combine them to achieve high throughput through hyperparameter tuning. We have identified efficient strategies for training large LLMs of varying sizes through empirical analysis and hyperparameter tuning. For 22 Billion, 175 Billion, and 1 Trillion parameters, we achieved GPU throughputs of 38.38%, 36.14%, and 31.96%, respectively. For the training of the 175 Billion parameter model and the 1 Trillion parameter model, we achieved 100% weak scaling efficiency on 1024 and 3072 MI250X GPUs, respectively. We also achieved strong scaling efficiencies of 89% and 87% for these two models.

  • 8 authors
·
Dec 19, 2023

Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment

Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.

  • 8 authors
·
Dec 6, 2023

Efficient Long-context Language Model Training by Core Attention Disaggregation

We present core attention disaggregation (CAD), a technique that improves long-context large language model training by decoupling the core attention computation, softmax(QK^T)V, from the rest of the model and executing it on a separate pool of devices. In existing systems, core attention is colocated with other layers; at long context lengths, its quadratic compute growth compared to the near-linear growth of other components causes load imbalance and stragglers across data and pipeline parallel groups. CAD is enabled by two observations. First, core attention is stateless: it has no trainable parameters and only minimal transient data, so balancing reduces to scheduling compute-bound tasks. Second, it is composable: modern attention kernels retain high efficiency when processing fused batches of token-level shards with arbitrary lengths. CAD partitions core attention into token-level tasks and dispatches them to dedicated attention servers, which dynamically rebatch tasks to equalize compute without sacrificing kernel efficiency. We implement CAD in a system called DistCA, which uses a ping-pong execution scheme to fully overlap communication with computation and in-place execution on attention servers to reduce memory use. On 512 H200 GPUs and context lengths up to 512k tokens, DistCA improves end-to-end training throughput by up to 1.35x, eliminates data and pipeline parallel stragglers, and achieves near-perfect compute and memory balance.

  • 9 authors
·
Oct 20, 2025 5

WaveStitch: Flexible and Fast Conditional Time Series Generation with Diffusion Models

Generating temporal data under conditions is crucial for forecasting, imputation, and generative tasks. Such data often has metadata and partially observed signals that jointly influence the generated values. However, existing methods face three key limitations: (1) they condition on either the metadata or observed values, but rarely both together; (2) they adopt either training-time approaches that fail to generalize to unseen scenarios, or inference-time approaches that ignore metadata; and (3) they suffer from trade-offs between generation speed and temporal coherence across time windows--choosing either slow but coherent autoregressive methods or fast but incoherent parallel ones. We propose WaveStitch, a novel diffusion-based method to overcome these hurdles through: (1) dual-sourced conditioning on both metadata and partially observed signals; (2) a hybrid training-inference architecture, incorporating metadata during training and observations at inference via gradient-based guidance; and (3) a novel pipeline-style paradigm that generates time windows in parallel while preserving coherence through an inference-time conditional loss and a stitching mechanism. Across diverse datasets, WaveStitch demonstrates adaptability to arbitrary patterns of observed signals, achieving 1.81x lower mean-squared-error compared to the state-of-the-art, and generates data up to 166.48x faster than autoregressive methods while maintaining coherence. Our code is available at: https://github.com/adis98/WaveStitch

  • 4 authors
·
Mar 8, 2025

MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core

Mixture of Experts (MoE) models enhance neural network scalability by dynamically selecting relevant experts per input token, enabling larger model sizes while maintaining manageable computation costs. However, efficient training of large-scale MoE models across thousands of GPUs presents significant challenges due to limitations in existing parallelism strategies. We introduce an end-to-end training framework for large-scale MoE models that utilizes five-dimensional hybrid parallelism: Tensor Parallelism, Expert Parallelism, Context Parallelism, Data Parallelism, and Pipeline Parallelism. Central to our approach is MoE Parallel Folding, a novel strategy that decouples the parallelization of attention and MoE layers in Transformer models, allowing each layer type to adopt optimal parallel configurations. Additionally, we develop a flexible token-level dispatcher that supports both token-dropping and token-dropless MoE training across all five dimensions of parallelism. This dispatcher accommodates dynamic tensor shapes and coordinates different parallelism schemes for Attention and MoE layers, facilitating complex parallelism implementations. Our experiments demonstrate significant improvements in training efficiency and scalability. We achieve up to 49.3% Model Flops Utilization (MFU) for the Mixtral 8x22B model and 39.0% MFU for the Qwen2-57B-A14B model on H100 GPUs, outperforming existing methods. The framework scales efficiently up to 1,024 GPUs and maintains high performance with sequence lengths up to 128K tokens, validating its effectiveness for large-scale MoE model training. The code is available in Megatron-Core.

  • 18 authors
·
Apr 21, 2025

PanGu-$α$: Large-scale Autoregressive Pretrained Chinese Language Models with Auto-parallel Computation

Large-scale Pretrained Language Models (PLMs) have become the new paradigm for Natural Language Processing (NLP). PLMs with hundreds of billions parameters such as GPT-3 have demonstrated strong performances on natural language understanding and generation with few-shot in-context learning. In this work, we present our practice on training large-scale autoregressive language models named PanGu-alpha, with up to 200 billion parameters. PanGu-alpha is developed under the MindSpore and trained on a cluster of 2048 Ascend 910 AI processors. The training parallelism strategy is implemented based on MindSpore Auto-parallel, which composes five parallelism dimensions to scale the training task to 2048 processors efficiently, including data parallelism, op-level model parallelism, pipeline model parallelism, optimizer model parallelism and rematerialization. To enhance the generalization ability of PanGu-alpha, we collect 1.1TB high-quality Chinese data from a wide range of domains to pretrain the model. We empirically test the generation ability of PanGu-alpha in various scenarios including text summarization, question answering, dialogue generation, etc. Moreover, we investigate the effect of model scales on the few-shot performances across a broad range of Chinese NLP tasks. The experimental results demonstrate the superior capabilities of PanGu-alpha in performing various tasks under few-shot or zero-shot settings.

  • 38 authors
·
Apr 26, 2021

Heterogeneous Low-Bandwidth Pre-Training of LLMs

Pre-training large language models (LLMs) increasingly requires distributed compute, yet bandwidth constraints make it difficult to scale beyond well-provisioned datacenters-especially when model parallelism forces frequent, large inter-device communications. We study whether SparseLoCo, a low-communication data parallel method based on infrequent synchronization and sparse pseudo-gradient exchange, can be combined with low-bandwidth pipeline model parallelism via activation and activation-gradient compression. We introduce a heterogeneous distributed training framework where some participants host full replicas on high-bandwidth interconnects, while resource-limited participants are grouped to jointly instantiate a replica using pipeline parallelism with subspace-projected inter-stage communication. To make the recently introduced subspace pipeline compression compatible with SparseLoCo, we study a number of adaptations. Across large-scale language modeling experiments (178M-1B parameters) on standard pretraining corpora, we find that activation compression composes with SparseLoCo at modest cost, while selective (heterogeneous) compression consistently improves the loss-communication tradeoff relative to compressing all replicas-especially at aggressive compression ratios. These results suggest a practical path to incorporating low-bandwidth model parallelism and heterogeneous participants into LLM pre-training.

  • 5 authors
·
Jan 5

Dimple: Discrete Diffusion Multimodal Large Language Model with Parallel Decoding

In this work, we propose Dimple, the first Discrete Diffusion Multimodal Large Language Model (DMLLM). We observe that training with a purely discrete diffusion approach leads to significant training instability, suboptimal performance, and severe length bias issues. To address these challenges, we design a novel training paradigm that combines an initial autoregressive phase with a subsequent diffusion phase. This approach yields the Dimple-7B model, trained on the same dataset and using a similar training pipeline as LLaVA-NEXT. Dimple-7B ultimately surpasses LLaVA-NEXT in performance by 3.9%, demonstrating that DMLLM can achieve performance comparable to that of autoregressive models. To improve inference efficiency, we propose a decoding strategy termed confident decoding, which dynamically adjusts the number of tokens generated at each step, significantly reducing the number of generation iterations. In autoregressive models, the number of forward iterations during generation equals the response length. With confident decoding, however, the number of iterations needed by Dimple is even only text{response length}{3}. We also re-implement the prefilling technique in autoregressive models and demonstrate that it does not significantly impact performance on most benchmark evaluations, while offering a speedup of 1.5x to 7x. Additionally, we explore Dimple's capability to precisely control its response using structure priors. These priors enable structured responses in a manner distinct from instruction-based or chain-of-thought prompting, and allow fine-grained control over response format and length, which is difficult to achieve in autoregressive models. Overall, this work validates the feasibility and advantages of DMLLM and enhances its inference efficiency and controllability. Code and models are available at https://github.com/yu-rp/Dimple.

  • 3 authors
·
May 22, 2025 4

FLUX-Makeup: High-Fidelity, Identity-Consistent, and Robust Makeup Transfer via Diffusion Transformer

Makeup transfer aims to apply the makeup style from a reference face to a target face and has been increasingly adopted in practical applications. Existing GAN-based approaches typically rely on carefully designed loss functions to balance transfer quality and facial identity consistency, while diffusion-based methods often depend on additional face-control modules or algorithms to preserve identity. However, these auxiliary components tend to introduce extra errors, leading to suboptimal transfer results. To overcome these limitations, we propose FLUX-Makeup, a high-fidelity, identity-consistent, and robust makeup transfer framework that eliminates the need for any auxiliary face-control components. Instead, our method directly leverages source-reference image pairs to achieve superior transfer performance. Specifically, we build our framework upon FLUX-Kontext, using the source image as its native conditional input. Furthermore, we introduce RefLoRAInjector, a lightweight makeup feature injector that decouples the reference pathway from the backbone, enabling efficient and comprehensive extraction of makeup-related information. In parallel, we design a robust and scalable data generation pipeline to provide more accurate supervision during training. The paired makeup datasets produced by this pipeline significantly surpass the quality of all existing datasets. Extensive experiments demonstrate that FLUX-Makeup achieves state-of-the-art performance, exhibiting strong robustness across diverse scenarios.

  • 12 authors
·
Aug 7, 2025

JaxMARL: Multi-Agent RL Environments in JAX

Benchmarks play an important role in the development of machine learning algorithms. For example, research in reinforcement learning (RL) has been heavily influenced by available environments and benchmarks. However, RL environments are traditionally run on the CPU, limiting their scalability with typical academic compute. Recent advancements in JAX have enabled the wider use of hardware acceleration to overcome these computational hurdles, enabling massively parallel RL training pipelines and environments. This is particularly useful for multi-agent reinforcement learning (MARL) research. First of all, multiple agents must be considered at each environment step, adding computational burden, and secondly, the sample complexity is increased due to non-stationarity, decentralised partial observability, or other MARL challenges. In this paper, we present JaxMARL, the first open-source code base that combines ease-of-use with GPU enabled efficiency, and supports a large number of commonly used MARL environments as well as popular baseline algorithms. When considering wall clock time, our experiments show that per-run our JAX-based training pipeline is up to 12500x faster than existing approaches. This enables efficient and thorough evaluations, with the potential to alleviate the evaluation crisis of the field. We also introduce and benchmark SMAX, a vectorised, simplified version of the popular StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft II game engine. This not only enables GPU acceleration, but also provides a more flexible MARL environment, unlocking the potential for self-play, meta-learning, and other future applications in MARL. We provide code at https://github.com/flairox/jaxmarl.

  • 20 authors
·
Nov 16, 2023