new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Optimization of embeddings storage for RAG systems using quantization and dimensionality reduction techniques

Retrieval-Augmented Generation enhances language models by retrieving relevant information from external knowledge bases, relying on high-dimensional vector embeddings typically stored in float32 precision. However, storing these embeddings at scale presents significant memory challenges. To address this issue, we systematically investigate on MTEB benchmark two complementary optimization strategies: quantization, evaluating standard formats (float16, int8, binary) and low-bit floating-point types (float8), and dimensionality reduction, assessing methods like PCA, Kernel PCA, UMAP, Random Projections and Autoencoders. Our results show that float8 quantization achieves a 4x storage reduction with minimal performance degradation (<0.3%), significantly outperforming int8 quantization at the same compression level, being simpler to implement. PCA emerges as the most effective dimensionality reduction technique. Crucially, combining moderate PCA (e.g., retaining 50% dimensions) with float8 quantization offers an excellent trade-off, achieving 8x total compression with less performance impact than using int8 alone (which provides only 4x compression). To facilitate practical application, we propose a methodology based on visualizing the performance-storage trade-off space to identify the optimal configuration that maximizes performance within their specific memory constraints.

  • 5 authors
·
Apr 30, 2025 1

Bullion: A Column Store for Machine Learning

The past two decades have witnessed significant success in applying columnar storage to data warehousing and analytics. However, the rapid growth of machine learning poses new challenges. This paper presents Bullion, a columnar storage system tailored for machine learning workloads. Bullion addresses the complexities of data compliance, optimizes the encoding of long sequence sparse features, efficiently manages wide-table projections, introduces feature quantization in storage, enables quality-aware sequential reads for multimodal training data, and provides a comprehensive cascading encoding framework that unifies diverse encoding schemes through modular, composable interfaces. By aligning with the evolving requirements of ML applications, Bullion facilitates the application of columnar storage and processing to modern application scenarios such as those within advertising, recommendation systems, and Generative AI. Preliminary experimental results and theoretical analysis demonstrate Bullion's improved ability to deliver strong performance in the face of the unique demands of machine learning workloads compared to existing columnar storage solutions. Bullion significantly reduces I/O costs for deletion compliance, achieves substantial storage savings with its optimized encoding scheme for sparse features, and improves metadata parsing speed for wide-table projections. These advancements enable Bullion to become an important component in the future of machine learning infrastructure, enabling organizations to efficiently manage and process the massive volumes of data required for training and inference in modern AI applications.

  • 4 authors
·
Apr 13, 2024

BinaryDM: Towards Accurate Binarization of Diffusion Model

With the advancement of diffusion models (DMs) and the substantially increased computational requirements, quantization emerges as a practical solution to obtain compact and efficient low-bit DMs. However, the highly discrete representation leads to severe accuracy degradation, hindering the quantization of diffusion models to ultra-low bit-widths. In this paper, we propose BinaryDM, a novel accurate quantization-aware training approach to push the weights of diffusion models towards the limit of 1-bit. Firstly, we present a Learnable Multi-basis Binarizer (LMB) to recover the representations generated by the binarized DM, which improves the information in details of representations crucial to the DM. Secondly, a Low-rank Representation Mimicking (LRM) is applied to enhance the binarization-aware optimization of the DM, alleviating the optimization direction ambiguity caused by fine-grained alignment. Moreover, a progressive initialization strategy is applied to training DMs to avoid convergence difficulties. Comprehensive experiments demonstrate that BinaryDM achieves significant accuracy and efficiency gains compared to SOTA quantization methods of DMs under ultra-low bit-widths. As the first binarization method for diffusion models, BinaryDM achieves impressive 16.0 times FLOPs and 27.1 times storage savings with 1-bit weight and 4-bit activation, showcasing its substantial advantages and potential for deploying DMs on resource-limited scenarios.

  • 9 authors
·
Apr 8, 2024

RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering

Neural Radiance Field (NeRF) based rendering has attracted growing attention thanks to its state-of-the-art (SOTA) rendering quality and wide applications in Augmented and Virtual Reality (AR/VR). However, immersive real-time (> 30 FPS) NeRF based rendering enabled interactions are still limited due to the low achievable throughput on AR/VR devices. To this end, we first profile SOTA efficient NeRF algorithms on commercial devices and identify two primary causes of the aforementioned inefficiency: (1) the uniform point sampling and (2) the dense accesses and computations of the required embeddings in NeRF. Furthermore, we propose RT-NeRF, which to the best of our knowledge is the first algorithm-hardware co-design acceleration of NeRF. Specifically, on the algorithm level, RT-NeRF integrates an efficient rendering pipeline for largely alleviating the inefficiency due to the commonly adopted uniform point sampling method in NeRF by directly computing the geometry of pre-existing points. Additionally, RT-NeRF leverages a coarse-grained view-dependent computing ordering scheme for eliminating the (unnecessary) processing of invisible points. On the hardware level, our proposed RT-NeRF accelerator (1) adopts a hybrid encoding scheme to adaptively switch between a bitmap- or coordinate-based sparsity encoding format for NeRF's sparse embeddings, aiming to maximize the storage savings and thus reduce the required DRAM accesses while supporting efficient NeRF decoding; and (2) integrates both a dual-purpose bi-direction adder & search tree and a high-density sparse search unit to coordinate the two aforementioned encoding formats. Extensive experiments on eight datasets consistently validate the effectiveness of RT-NeRF, achieving a large throughput improvement (e.g., 9.7x - 3,201x) while maintaining the rendering quality as compared with SOTA efficient NeRF solutions.

  • 5 authors
·
Dec 2, 2022

Evolution Strategies at the Hyperscale

We introduce Evolution Guided General Optimization via Low-rank Learning (EGGROLL), an evolution strategies (ES) algorithm designed to scale backprop-free optimization to large population sizes for modern large neural network architectures with billions of parameters. ES is a set of powerful blackbox optimisation methods that can handle non-differentiable or noisy objectives with excellent scaling potential through parallelisation. Na{ï}ve ES becomes prohibitively expensive at scale due to the computational and memory costs associated with generating matrix perturbations EinR^{mtimes n} and the batched matrix multiplications needed to compute per-member forward passes. EGGROLL overcomes these bottlenecks by generating random matrices Ain R^{mtimes r}, Bin R^{ntimes r} with rll min(m,n) to form a low-rank matrix perturbation A B^top that are used in place of the full-rank perturbation E. As the overall update is an average across a population of N workers, this still results in a high-rank update but with significant memory and computation savings, reducing the auxiliary storage from mn to r(m+n) per layer and the cost of a forward pass from O(mn) to O(r(m+n)) when compared to full-rank ES. A theoretical analysis reveals our low-rank update converges to the full-rank update at a fast Oleft(1{r}right) rate. Our experiments show that (1) EGGROLL does not compromise the performance of ES in tabula-rasa RL settings, despite being faster, (2) it is competitive with GRPO as a technique for improving LLM reasoning, and (3) EGGROLL enables stable pre-training of nonlinear recurrent language models that operate purely in integer datatypes.

  • 16 authors
·
Nov 20, 2025

Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems

Hybrid storage systems (HSS) integrate multiple storage devices with diverse characteristics to deliver high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which dynamically rearranges stored data (i.e., prefetches hot data and evicts cold data) across the devices to sustain high HSS performance. Prior works optimize either data placement or data migration in isolation, which leads to suboptimal HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS, and thus significantly improve system performance. We propose Harmonia, a multi-agent reinforcement learning (RL)-based data-management technique that employs two lightweight autonomous RL agents, a data-placement agent and a data-migration agent, that adapt their policies for the current workload and HSS configuration while coordinating with each other to improve overall HSS performance. We evaluate Harmonia on real HSS configurations with up to four heterogeneous storage devices and seventeen data-intensive workloads. On performance-optimized (cost-optimized) HSS with two storage devices, Harmonia outperforms the best-performing prior approach by 49.5% (31.7%) on average. On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%) on average. Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB in DRAM for both RL agents combined). We will open-source Harmonia's implementation to aid future research on HSS.

  • 9 authors
·
Mar 26, 2025

Logzip: Extracting Hidden Structures via Iterative Clustering for Log Compression

System logs record detailed runtime information of software systems and are used as the main data source for many tasks around software engineering. As modern software systems are evolving into large scale and complex structures, logs have become one type of fast-growing big data in industry. In particular, such logs often need to be stored for a long time in practice (e.g., a year), in order to analyze recurrent problems or track security issues. However, archiving logs consumes a large amount of storage space and computing resources, which in turn incurs high operational cost. Data compression is essential to reduce the cost of log storage. Traditional compression tools (e.g., gzip) work well for general texts, but are not tailed for system logs. In this paper, we propose a novel and effective log compression method, namely logzip. Logzip is capable of extracting hidden structures from raw logs via fast iterative clustering and further generating coherent intermediate representations that allow for more effective compression. We evaluate logzip on five large log datasets of different system types, with a total of 63.6 GB in size. The results show that logzip can save about half of the storage space on average over traditional compression tools. Meanwhile, the design of logzip is highly parallel and only incurs negligible overhead. In addition, we share our industrial experience of applying logzip to Huawei's real products.

  • 6 authors
·
Sep 23, 2019