new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

Stability of Superconducting Strings

We investigate the stability of superconducting strings as bound states of strings and fermion zero modes at both the classical and quantum levels. The dynamics of these superconducting strings can result in a stable configuration, known as a vorton. We mainly focus on global strings, but the majority of the discussion can be applied to local strings. Using lattice simulations, we study the classical dynamics of superconducting strings and confirm that they relax to the vorton configuration through Nambu-Goldstone boson radiation, with no evidence of over-shooting that would destabilize the vorton. We explore the tunneling of fermion zero modes out of the strings. Both our classical analysis and quantum calculations yield consistent results: the maximum energy of the zero mode significantly exceeds the fermion mass, in contrast to previous literature. Additionally, we introduce a world-sheet formalism to evaluate the decay rate of zero modes into other particles, which constitute the dominant decay channel. We also identify additional processes that trigger zero-mode decay due to non-adiabatic changes of the string configuration. In these decay processes, the rates are suppressed by the curvature of string loops, with exponential suppression for large masses of the final states. We further study the scattering with light charged particles surrounding the string core produced by the zero-mode current and find that a wide zero-mode wavefunction can enhance vorton stability.

  • 4 authors
·
Dec 16, 2024

First observation of the Josephson-Anderson relation in experiments on hydrodynamic drag

We verify a recent prediction (Eq. 3.50 in G. L. Eyink, Phys. Rev. X 11, 031054 (2021)) for the drag on an object moving through a fluid. In this prediction the velocity field is decomposed into a nonvortical (potential) and vortical contribution, and so is the associated drag force. In the Josephson-Anderson relation the vortical contribution of the drag force follows from the flux of vorticity traversing the streamlines of the corresponding potential flow. The potential component is directly determined by the plate acceleration and its added mass. The Josephson-Anderson relation is derived from the quantum description of superfluids, but remarkably applies to the classical fluid in our experiment. In our experiment a flat plate is accelerated through water using a robotic arm. This geometry is simple enough to allow analytic potential flow streamlines. The monitored plate position shows an oscillatory component of the acceleration, which adds an additional test of the Josephson-Anderson relation. The instantaneous velocity field is measured using particle image velocimetry. It enables us to evaluate Eq. 3.50 from [1] and compare its prediction to the measured drag force. We find excellent agreement, and, most remarkably find that the added mass contribution to the drag force still stands out after the flow has turned vortical. We finally comment on the requirements on the experimental techniques for evaluating the Josephson-Anderson relation.

  • 5 authors
·
Aug 27, 2025

Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions

We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the U(1) degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous U(1) system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.

  • 4 authors
·
Dec 14, 2022

Measuring Casimir Force Across a Superconducting Transition

The Casimir effect and superconductivity are foundational quantum phenomena whose interaction remains an open question in physics. How Casimir forces behave across a superconducting transition remains unresolved, owing to the experimental difficulty of achieving alignment, cryogenic environments, and isolating small changes from competing effects. This question carries implications for electron physics, quantum gravity, and high-temperature superconductivity. Here we demonstrate an on-chip superconducting platform that overcomes these challenges, achieving one of the most parallel Casimir configurations to date. Our microchip-based cavities achieve unprecedented area-to-separation ratio between plates, exceeding previous Casimir experiments by orders of magnitude and generating the strongest Casimir forces yet between compliant surfaces. Scanning tunneling microscopy (STM) is used for the first time to directly detect the resonant motion of a suspended membrane, with subatomic precision in both lateral positioning and displacement. Such precision measurements across a superconducting transition allow for the suppression of all van der Waals, electrostatic, and thermal effects. Preliminary measurements suggest superconductivity-dependent shifts in the Casimir force, motivating further investigation and comparison with theories. By uniting extreme parallelism, nanomechanics, and STM readout, our platform opens a new experimental frontier at the intersection of Casimir physics and superconductivity.

  • 7 authors
·
Apr 14, 2025

Single-shot thermometry of simulated Bose--Einstein condensates using artificial intelligence

Precise determination of thermodynamic parameters in ultracold Bose gases remains challenging due to the destructive nature of conventional measurement techniques and inherent experimental uncertainties. We demonstrate an artificial intelligence approach for rapid, non-destructive estimation of the chemical potential and temperature from single-shot, in situ imaged density profiles of finite-temperature Bose gases. Our convolutional neural network is trained exclusively on quasi-2D `pancake' condensates in harmonic trap configurations. It achieves parameter extraction within fractions of a second. The model also demonstrates zero-shot generalisation across both trap geometry and thermalisation dynamics, successfully estimating thermodynamic parameters for toroidally trapped condensates with errors of only a few nanokelvin despite no prior exposure to such geometries during training, and maintaining predictive accuracy during dynamic thermalisation processes after a relatively brief evolution without explicit training on non-equilibrium states. These results suggest that supervised learning can overcome traditional limitations in ultracold atom thermometry, with extension to broader geometric configurations, temperature ranges, and additional parameters potentially enabling comprehensive real-time analysis of quantum gas experiments. Such capabilities could significantly streamline experimental workflows whilst improving measurement precision across a range of quantum fluid systems.

  • 3 authors
·
Jun 20, 2025

Coherent Structures Governing Transport at Turbulent Interfaces

In an experiment on a turbulent jet, we detect interfacial turbulent layers in a frame that moves, on average, along with the \tnti. This significantly prolongs the observation time of scalar and velocity structures and enables the measurement of two types of Lagrangian coherent structures. One structure, the finite-time Lyapunov field (FTLE), quantifies advective transport barriers of fluid parcels while the other structure highlights barriers of diffusive momentum transport. These two complementary structures depend on large-scale and small-scale motion and are therefore associated with the growth of the turbulent region through engulfment or nibbling, respectively. We detect the \tnti\ from cluster analysis, where we divide the measured scalar field into four clusters. Not only the \tnti\ can be found this way, but also the next, internal, turbulent-turbulent interface. Conditional averages show that these interfaces are correlated with barriers of advective and diffusive transport when the Lagrangian integration time is smaller than the integral time scale. Diffusive structures decorrelate faster since they have a smaller timescale. Conditional averages of these structures at internal turbulent-turbulent interfaces show the same pattern with a more pronounced jump at the interface indicative of a shear layer. This is quite an unexpected outcome, as the internal interface is now defined not by the presence or absence of vorticity, but by conditional vorticity corresponding to two uniform concentration zones. The long-time diffusive momentum flux along Lagrangian paths represents the growth of the turbulent flow into the irrotational domain, a direct demonstration of nibbling. The diffusive flux parallel to the \tnti\ appears to be concentrated in a diffusive superlayer whose width is comparable with the Taylor microscale, which is relatively invariant in time.

  • 5 authors
·
Dec 17, 2024

Theory of superconducting proximity effect in hole-based hybrid semiconductor-superconductor devices

Hybrid superconductor-semiconductor systems have received a great deal of attention in the last few years because of their potential for quantum engineering, including novel qubits and topological devices. The proximity effect, the process by which the semiconductor inherits superconducting correlations, is an essential physical mechanism of such hybrids. Recent experiments have demonstrated the proximity effect in hole-based semiconductors, but, in contrast to electrons, the precise mechanism by which the hole bands acquire superconducting correlations remains an open question. In addition, hole spins exhibit a complex strong spin-orbit interaction, with largely anisotropic responses to electric and magnetic fields, further motivating the importance of understanding the interplay between such effects and the proximity effect. In this work, we analyze this physics with focus on germanium-based two-dimensional gases. Specifically, we develop an effective theory supported by full numerics, allowing us to extract various analytical expressions and predict different types of superconducting correlations including non-standard forms of singlet and triplet pairing mechanisms with non-trivial momentum dependence; as well as different Zeeman and Rashba spin-orbit contributions. This, together with their precise dependence on electric and magnetic fields, allows us to make specific experimental predictions, including the emergence of f-type superconductivity, Bogoliubov Fermi surfaces, and gapless regimes caused by large in-plane magnetic fields.

  • 5 authors
·
Dec 30, 2024

CFDBench: A Large-Scale Benchmark for Machine Learning Methods in Fluid Dynamics

In recent years, applying deep learning to solve physics problems has attracted much attention. Data-driven deep learning methods produce fast numerical operators that can learn approximate solutions to the whole system of partial differential equations (i.e., surrogate modeling). Although these neural networks may have lower accuracy than traditional numerical methods, they, once trained, are orders of magnitude faster at inference. Hence, one crucial feature is that these operators can generalize to unseen PDE parameters without expensive re-training.In this paper, we construct CFDBench, a benchmark tailored for evaluating the generalization ability of neural operators after training in computational fluid dynamics (CFD) problems. It features four classic CFD problems: lid-driven cavity flow, laminar boundary layer flow in circular tubes, dam flows through the steps, and periodic Karman vortex street. The data contains a total of 302K frames of velocity and pressure fields, involving 739 cases with different operating condition parameters, generated with numerical methods. We evaluate the effectiveness of popular neural operators including feed-forward networks, DeepONet, FNO, U-Net, etc. on CFDBnech by predicting flows with non-periodic boundary conditions, fluid properties, and flow domain shapes that are not seen during training. Appropriate modifications were made to apply popular deep neural networks to CFDBench and enable the accommodation of more changing inputs. Empirical results on CFDBench show many baseline models have errors as high as 300% in some problems, and severe error accumulation when performing autoregressive inference. CFDBench facilitates a more comprehensive comparison between different neural operators for CFD compared to existing benchmarks.

  • 3 authors
·
Sep 13, 2023

PhysicsFormer: An Efficient and Fast Attention-Based Physics Informed Neural Network for Solving Incompressible Navier Stokes Equations

Traditional experimental and numerical approaches for fluid dynamics problems often suffer from high computational cost, mesh sensitivity, and limited capability in capturing complex physical behaviors. Moreover, conventional physics-informed neural networks (PINNs) frequently struggle in chaotic and highly unsteady flow regimes. In this work, we propose PhysicsFormer, a fast and efficient transformer-based physics-informed framework that incorporates multi-head encoder-decoder cross-attention. Unlike multilayer perceptron-based PINNs, PhysicsFormer operates on sequential representations constructed from spatio-temporal data, enabling effective learning of long-range temporal dependencies and improved propagation of initial condition information. A data-embedding strategy is employed to convert spatio-temporal points into pseudo-sequences, while a dynamics-weighted loss function replaces the standard PINNs formulation. Owing to its parallel learning structure, PhysicsFormer demonstrates superior computational efficiency compared to existing transformer-based approaches. The framework is validated on Burgers' equation and flow reconstruction governed by the Navier-Stokes equations, achieving mean squared errors on the order of 10^{-6}. In addition, an inverse problem involving parameter identification in the two-dimensional incompressible Navier-Stokes equations is investigated. For clean data, PhysicsFormer achieves zero identification error for both λ_1 and λ_2; under 1% Gaussian noise, the errors are 0.07% for λ_1 and 0% for λ_2. These results demonstrate that PhysicsFormer provides a reliable and computationally efficient surrogate modeling framework for time-dependent fluid flow problems.

  • 3 authors
·
Jan 7

The Simons Observatory: Cryogenic Half Wave Plate Rotation Mechanism for the Small Aperture Telescopes

We present the requirements, design and evaluation of the cryogenic continuously rotating half-wave plate (CHWP) for the Simons Observatory (SO). SO is a cosmic microwave background (CMB) polarization experiment at Parque Astron\'{o}mico Atacama in northern Chile that covers a wide range of angular scales using both small (0.42 m) and large (6 m) aperture telescopes. In particular, the small aperture telescopes (SATs) focus on large angular scales for primordial B-mode polarization. To this end, the SATs employ a CHWP to modulate the polarization of the incident light at 8 Hz, suppressing atmospheric 1/f noise and mitigating systematic uncertainties that would otherwise arise due to the differential response of detectors sensitive to orthogonal polarizations. The CHWP consists of a 505 mm diameter achromatic sapphire HWP and a cryogenic rotation mechanism, both of which are cooled down to sim50 K to reduce detector thermal loading. Under normal operation the HWP is suspended by a superconducting magnetic bearing and rotates with a constant 2 Hz frequency, controlled by an electromagnetic synchronous motor. We find that the number of superconductors and magnets that make up the superconducting magnetic bearing are important design parameters, especially for the rotation mechanism's vibration performance. The rotation angle is detected through an angular encoder with a noise level of 0.07 muradmathrm{s}. During a cooldown, the rotor is held in place by a grip-and-release mechanism that serves as both an alignment device and a thermal path. In this paper we provide an overview of the SO SAT CHWP: its requirements, hardware design, and laboratory performance.

  • 27 authors
·
Sep 26, 2023

Adiabatic Solutions of the Haydys-Witten Equations and Symplectic Khovanov Homology

An influential conjecture by Witten states that there is an instanton Floer homology of four-manifolds with corners that in certain situations is isomorphic to Khovanov homology of a given knot K. The Floer chain complex is generated by Nahm pole solutions of the Kapustin-Witten equations on R^3 times R^+_y with an additional monopole-like singular behaviour along the knot K inside the three-dimensional boundary at y=0. The Floer differential is given by counting solutions of the Haydys-Witten equations that interpolate between Kapustin-Witten solutions along an additional flow direction R_s. This article investigates solutions of a decoupled version of the Kapustin-Witten and Haydys-Witten equations on R_s times R^3 times R^+_y, which in contrast to the full equations exhibit a Hermitian Yang-Mills structure and can be viewed as a lift of the extended Bogomolny equations (EBE) from three to five dimensions. Inspired by Gaiotto-Witten's approach of adiabatically braiding EBE-solutions to obtain generators of the Floer homology, we propose that there is an equivalence between adiabatic solutions of the decoupled Haydys-Witten equations and non-vertical paths in the moduli space of EBE-solutions fibered over the space of monopole positions. Moreover, we argue that the Grothendieck-Springer resolution of the Lie algebra of the gauge group provides a finite-dimensional model of this moduli space of monopole solutions. These considerations suggest an intriguing similarity between Haydys-Witten instanton Floer homology and symplectic Khovanov homology and provide a novel approach towards a proof of Witten's gauge-theoretic interpretations of Khovanov homology.

  • 1 authors
·
Jan 2, 2025

Solving Navier-Stokes Equations Using Data-free Physics-Informed Neural Networks With Hard Boundary Conditions

In recent years, Physics-Informed Neural Networks (PINNs) have emerged as a powerful and robust framework for solving nonlinear differential equations across a wide range of scientific and engineering disciplines, including biology, geophysics, astrophysics and fluid dynamics. In the PINN framework, the governing partial differential equations, along with initial and boundary conditions, are encoded directly into the loss function, enabling the network to learn solutions that are consistent with the underlying physics. In this work, we employ the PINN framework to solve the dimensionless Navier-Stokes equations for three two-dimensional incompressible, steady, laminar flow problems without using any labeled data. The boundary and initial conditions are enforced in a hard manner, ensuring they are satisfied exactly rather than penalized during training. We validate the PINN predicted velocity profiles, drag coefficients and pressure profiles against the conventional computational fluid dynamics (CFD) simulations for moderate to high values of Reynolds number (Re). It is observed that the PINN predictions show good agreement with the CFD results at lower Re. We also extend our analysis to a transient condition and find that our method is equally capable of simulating complex time-dependent flow dynamics. To quantitatively assess the accuracy, we compute the L_2 normalized error, which lies in the range O(10^{-4}) - O(10^{-1}) for our chosen case studies.

  • 4 authors
·
Nov 18, 2025

FISC: A Fluid-Inspired Framework for Decentralized and Scalable Swarm Control

Achieving scalable coordination in large robotic swarms is often constrained by reliance on inter-agent communication, which introduces latency, bandwidth limitations, and vulnerability to failure. To address this gap, a decentralized approach for outer-loop control of large multi-agent systems based on the paradigm of how a fluid moves through a volume is proposed and evaluated. A relationship between fundamental fluidic element properties and individual robotic agent states is developed such that the corresponding swarm "flows" through a space, akin to a fluid when forced via a pressure boundary condition. By ascribing fluid-like properties to subsets of agents, the swarm evolves collectively while maintaining desirable structure and coherence without explicit communication of agent states within or outside of the swarm. The approach is evaluated using simulations involving O(10^3) quadcopter agents and compared against Computational Fluid Dynamics (CFD) solutions for a converging-diverging domain. Quantitative agreement between swarm-derived and CFD fields is assessed using Root-Mean-Square Error (RMSE), yielding normalized errors of 0.15-0.9 for velocity, 0.61-0.98 for density, 0-0.937 for pressure. These results demonstrate the feasibility of treating large robotic swarms as continuum systems that retain the macroscopic structure derived from first principles, providing a basis for scalable and decentralized control.

  • 3 authors
·
Jan 30

amangkurat: A Python Library for Symplectic Pseudo-Spectral Solution of the Idealized (1+1)D Nonlinear Klein-Gordon Equation

This study introduces amangkurat, an open-source Python library designed for the robust numerical simulation of relativistic scalar field dynamics governed by the nonlinear Klein-Gordon equation in (1+1)D spacetime. The software implements a hybrid computational strategy that couples Fourier pseudo-spectral spatial discretization with a symplectic Størmer-Verlet temporal integrator, ensuring both exponential spatial convergence for smooth solutions and long-term preservation of Hamiltonian structure. To optimize performance, the solver incorporates adaptive timestepping based on Courant-Friedrichs-Lewy (CFL) stability criteria and utilizes Just-In-Time (JIT) compilation for parallelized force computation. The library's capabilities are validated across four canonical physical regimes: dispersive linear wave propagation, static topological kink preservation in phi-fourth theory, integrable breather dynamics in the sine-Gordon model, and non-integrable kink-antikink collisions. Beyond standard numerical validation, this work establishes a multi-faceted analysis framework employing information-theoretic entropy metrics (Shannon, Rényi, and Tsallis), kernel density estimation, and phase space reconstruction to quantify the distinct phenomenological signatures of these regimes. Statistical hypothesis testing confirms that these scenarios represent statistically distinguishable dynamical populations. Benchmarks on standard workstation hardware demonstrate that the implementation achieves high computational efficiency, making it a viable platform for exploratory research and education in nonlinear field theory.

  • 2 authors
·
Dec 27, 2025

S2SNet: A Pretrained Neural Network for Superconductivity Discovery

Superconductivity allows electrical current to flow without any energy loss, and thus making solids superconducting is a grand goal of physics, material science, and electrical engineering. More than 16 Nobel Laureates have been awarded for their contribution to superconductivity research. Superconductors are valuable for sustainable development goals (SDGs), such as climate change mitigation, affordable and clean energy, industry, innovation and infrastructure, and so on. However, a unified physics theory explaining all superconductivity mechanism is still unknown. It is believed that superconductivity is microscopically due to not only molecular compositions but also the geometric crystal structure. Hence a new dataset, S2S, containing both crystal structures and superconducting critical temperature, is built upon SuperCon and Material Project. Based on this new dataset, we propose a novel model, S2SNet, which utilizes the attention mechanism for superconductivity prediction. To overcome the shortage of data, S2SNet is pre-trained on the whole Material Project dataset with Masked-Language Modeling (MLM). S2SNet makes a new state-of-the-art, with out-of-sample accuracy of 92% and Area Under Curve (AUC) of 0.92. To the best of our knowledge, S2SNet is the first work to predict superconductivity with only information of crystal structures. This work is beneficial to superconductivity discovery and further SDGs. Code and datasets are available in https://github.com/zjuKeLiu/S2SNet

  • 4 authors
·
Jun 28, 2023

Detecting Fermi Surface Nesting Effect for Fermionic Dicke Transition by Trap Induced Localization

Recently, the statistical effect of fermionic superradiance is approved by series of experiments both in free space and in a cavity. The Pauli blocking effect can be visualized by a 1/2 scaling of Dicke transition critical pumping strength against particle number Nat for fermions in a trap. However, the Fermi surface nesting effect, which manifests the enhancement of superradiance by Fermi statistics is still very hard to be identified. Here we studied the influence of localized fermions on the trap edge when both pumping optical lattice and the trap are presented. We find due to localization, the statistical effect in superradiant transition is enhanced. Two new scalings of critical pumping strength are observed as 4/3, and 2/3 for mediate particle number, and the Pauli blocking scaling 1/3 (2d case) in large particle number limit is unaffected. Further, we find the 4/3 scaling is subject to a power law increasing with rising ratio between recoil energy and trap frequency in pumping laser direction. The divergence of this scaling of critical pumping strength against N_{rm at} in E_R/omega_xrightarrow+infty limit can be identified as the Fermi surface nesting effect. Thus we find a practical experimental scheme for visualizing the long-desired Fermi surface nesting effect with the help of trap induced localization in a two-dimensional Fermi gas in a cavity.

  • 2 authors
·
Mar 1, 2023

Deep Learning solutions to singular ordinary differential equations: from special functions to spherical accretion

Singular regular points often arise in differential equations describing physical phenomena such as fluid dynamics, electromagnetism, and gravitation. Traditional numerical techniques often fail or become unstable near these points, requiring the use of semi-analytical tools, such as series expansions and perturbative methods, in combination with numerical algorithms; or to invoke more sophisticated methods. In this work, we take an alternative route and leverage the power of machine learning to exploit Physics Informed Neural Networks (PINNs) as a modern approach to solving ordinary differential equations with singular points. PINNs utilize deep learning architectures to approximate solutions by embedding the differential equations into the loss function of the neural network. We discuss the advantages of PINNs in handling singularities, particularly their ability to bypass traditional grid-based methods and provide smooth approximations across irregular regions. Techniques for enhancing the accuracy of PINNs near singular points, such as adaptive loss weighting, are used in order to achieve high efficiency in the training of the network. We exemplify our results by studying four differential equations of interest in mathematics and gravitation -- the Legendre equation, the hypergeometric equation, the solution for black hole space-times in theories of Lorentz violating gravity, and the spherical accretion of a perfect fluid in a Schwarzschild geometry.

  • 3 authors
·
Sep 30, 2024

AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers

Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching the 100 millions, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce AB-UPT as a novel modeling scheme for building neural surrogates for CFD simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a novel divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a CAD geometry alone, omitting the need for costly CFD meshing procedures.

  • 7 authors
·
Feb 13, 2025

Matters Arising from S. Vaitiekenas et al., "Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires" Nature Physics 2021

In 2021 Nature Physics published a paper by Vaitiekenas, Liu, Krogstrup and Marcus titled "Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires". The paper reports low temperature transport measurements on semiconductor InAs nanowires with two partly overlapping shells -- a shell of EuS, a magnetic insulator, and a shell of Al, a metal that becomes superconducting at temperatures below 1.2K. The paper claims that (1) the data are consistent with induced topological superconductivity and Majorana zero modes (MZMs), and (2) that this is facilitated by the breaking of the time reversal symmetry through a direct magnetic interaction with the EuS shell. In this Matters Arising, we present an alternative explanation which is based on trivial effects that are likely to appear in the reported geometry. Specifically, first, we find that data the authors present in support of the topological superconductivity claim can originate from unintended quantum dots in their devices, a widely known likely explanation that is not being discussed in the paper. Second, our analysis of the setup, supported by our numerical micromagnetic simulations, shows similar effects could be obtained due to stray magnetic fields from the region of the EuS shell damaged during Al etching. This basic picture should come before the exotic interpretation in terms of magnetic exchange interaction with a ferromagnetic insulator.

  • 6 authors
·
Jan 7, 2025

Multiphysics Bench: Benchmarking and Investigating Scientific Machine Learning for Multiphysics PDEs

Solving partial differential equations (PDEs) with machine learning has recently attracted great attention, as PDEs are fundamental tools for modeling real-world systems that range from fundamental physical science to advanced engineering disciplines. Most real-world physical systems across various disciplines are actually involved in multiple coupled physical fields rather than a single field. However, previous machine learning studies mainly focused on solving single-field problems, but overlooked the importance and characteristics of multiphysics problems in real world. Multiphysics PDEs typically entail multiple strongly coupled variables, thereby introducing additional complexity and challenges, such as inter-field coupling. Both benchmarking and solving multiphysics problems with machine learning remain largely unexamined. To identify and address the emerging challenges in multiphysics problems, we mainly made three contributions in this work. First, we collect the first general multiphysics dataset, the Multiphysics Bench, that focuses on multiphysics PDE solving with machine learning. Multiphysics Bench is also the most comprehensive PDE dataset to date, featuring the broadest range of coupling types, the greatest diversity of PDE formulations, and the largest dataset scale. Second, we conduct the first systematic investigation on multiple representative learning-based PDE solvers, such as PINNs, FNO, DeepONet, and DiffusionPDE solvers, on multiphysics problems. Unfortunately, naively applying these existing solvers usually show very poor performance for solving multiphysics. Third, through extensive experiments and discussions, we report multiple insights and a bag of useful tricks for solving multiphysics with machine learning, motivating future directions in the study and simulation of complex, coupled physical systems.

  • 5 authors
·
May 23, 2025

simple-idealized-1d-nlse: Pseudo-Spectral Solver for the 1D Nonlinear Schrödinger Equation

We present an open-source Python implementation of an idealized high-order pseudo-spectral solver for the one-dimensional nonlinear Schr\"odinger equation (NLSE). The solver combines Fourier spectral spatial discretization with an adaptive eighth-order Dormand-Prince time integration scheme to achieve machine-precision conservation of mass and near-perfect preservation of momentum and energy for smooth solutions. The implementation accurately reproduces fundamental NLSE phenomena including soliton collisions with analytically predicted phase shifts, Akhmediev breather dynamics, and the development of modulation instability from noisy initial conditions. Four canonical test cases validate the numerical scheme: single soliton propagation, two-soliton elastic collision, breather evolution, and noise-seeded modulation instability. The solver employs a 2/3 dealiasing rule with exponential filtering to prevent aliasing errors from the cubic nonlinearity. Statistical analysis using Shannon, R\'enyi, and Tsallis entropies quantifies the spatio-temporal complexity of solutions, while phase space representations reveal the underlying coherence structure. The implementation prioritizes code transparency and educational accessibility over computational performance, providing a valuable pedagogical tool for exploring nonlinear wave dynamics. Complete source code, documentation, and example configurations are freely available, enabling reproducible computational experiments across diverse physical contexts where the NLSE governs wave evolution, including nonlinear optics, Bose-Einstein condensates, and ocean surface waves.

  • 5 authors
·
Sep 6, 2025

GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations

Nuclear fusion plays a pivotal role in the quest for reliable and sustainable energy production. A major roadblock to viable fusion power is understanding plasma turbulence, which significantly impairs plasma confinement, and is vital for next-generation reactor design. Plasma turbulence is governed by the nonlinear gyrokinetic equation, which evolves a 5D distribution function over time. Due to its high computational cost, reduced-order models are often employed in practice to approximate turbulent transport of energy. However, they omit nonlinear effects unique to the full 5D dynamics. To tackle this, we introduce GyroSwin, the first scalable 5D neural surrogate that can model 5D nonlinear gyrokinetic simulations, thereby capturing the physical phenomena neglected by reduced models, while providing accurate estimates of turbulent heat transport.GyroSwin (i) extends hierarchical Vision Transformers to 5D, (ii) introduces cross-attention and integration modules for latent 3Dleftrightarrow5D interactions between electrostatic potential fields and the distribution function, and (iii) performs channelwise mode separation inspired by nonlinear physics. We demonstrate that GyroSwin outperforms widely used reduced numerics on heat flux prediction, captures the turbulent energy cascade, and reduces the cost of fully resolved nonlinear gyrokinetics by three orders of magnitude while remaining physically verifiable. GyroSwin shows promising scaling laws, tested up to one billion parameters, paving the way for scalable neural surrogates for gyrokinetic simulations of plasma turbulence.

Respecting causality is all you need for training physics-informed neural networks

While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.

  • 3 authors
·
Mar 14, 2022

LLM4Fluid: Large Language Models as Generalizable Neural Solvers for Fluid Dynamics

Deep learning has emerged as a promising paradigm for spatio-temporal modeling of fluid dynamics. However, existing approaches often suffer from limited generalization to unseen flow conditions and typically require retraining when applied to new scenarios. In this paper, we present LLM4Fluid, a spatio-temporal prediction framework that leverages Large Language Models (LLMs) as generalizable neural solvers for fluid dynamics. The framework first compresses high-dimensional flow fields into a compact latent space via reduced-order modeling enhanced with a physics-informed disentanglement mechanism, effectively mitigating spatial feature entanglement while preserving essential flow structures. A pretrained LLM then serves as a temporal processor, autoregressively predicting the dynamics of physical sequences with time series prompts. To bridge the modality gap between prompts and physical sequences, which can otherwise degrade prediction accuracy, we propose a dedicated modality alignment strategy that resolves representational mismatch and stabilizes long-term prediction. Extensive experiments across diverse flow scenarios demonstrate that LLM4Fluid functions as a robust and generalizable neural solver without retraining, achieving state-of-the-art accuracy while exhibiting powerful zero-shot and in-context learning capabilities. Code and datasets are publicly available at https://github.com/qisongxiao/LLM4Fluid.

  • 13 authors
·
Jan 29

Space and Time Continuous Physics Simulation From Partial Observations

Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.

  • 4 authors
·
Jan 17, 2024

Domain walls in the scaling regime: Equal Time Correlator and Gravitational Waves

Domain walls are topological defects that may have formed in the early Universe through the spontaneous breakdown of discrete symmetries, and can be a strong source of gravitational waves (GWs). We perform 3D lattice field theory simulations with CosmoLattice, considering grid sizes N = 1250, 2048 and 4096, to study the dynamics of the domain wall network and its GW signatures. We first analyze how the network approaches the scaling regime with a constant O(1) number of domain walls per Hubble volume, including setups with a large initial number of domains as expected in realistic scenarios, and find that scaling is always reached in a few Hubble times after the network formation. To better understand the properties of the scaling regime, we then numerically extract the Equal Time Correlator (ETC) of the energy-momentum tensor of the network, thus determining its characteristic shape for the case of domain walls, and verifying explicitly its functional dependence as predicted by scaling arguments. The ETC can be further extended to the Unequal Time Correlator (UTC) controlling the GW emission by making assumptions on the coherence of the source. By comparison with the actual GW spectrum evaluated by CosmoLattice, we are then able to infer the degree of coherence of the domain wall network. Finally, by performing numerical simulations in different background cosmologies, e.g. radiation domination and kination, we find evidence for a universal ETC at subhorizon scales and hence a universal shape of the GW spectrum in the UV, while the expansion history of the Universe may instead be determined by the IR features of the GW spectrum.

  • 4 authors
·
Nov 20, 2025

ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks

Stellarators are magnetic confinement devices under active development to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Recent advances in plasma physics and open-source tools have made stellarator optimization more accessible. However, broader community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations, considered as a promising path to commercial fusion due to their inherent resilience to current-driven disruptions. Here, we release an open dataset of diverse QI-like stellarator plasma boundary shapes, paired with their ideal magnetohydrodynamic (MHD) equilibria and performance metrics. We generated this dataset by sampling a variety of QI fields and optimizing corresponding stellarator plasma boundaries. We introduce three optimization benchmarks of increasing complexity: (1) a single-objective geometric optimization problem, (2) a "simple-to-build" QI stellarator, and (3) a multi-objective ideal-MHD stable QI stellarator that investigates trade-offs between compactness and coil simplicity. For every benchmark, we provide reference code, evaluation scripts, and strong baselines based on classical optimization techniques. Finally, we show how learned models trained on our dataset can efficiently generate novel, feasible configurations without querying expensive physics oracles. By openly releasing the dataset along with benchmark problems and baselines, we aim to lower the entry barrier for optimization and machine learning researchers to engage in stellarator design and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.

  • 11 authors
·
Jun 24, 2025

Bell Instability and Cosmic-Ray Acceleration in AGN Ultrafast Outflow Shocks

We investigate magnetic-field amplification driven by the nonresonant hybrid (NRH or Bell) instability and its impact on cosmic-ray (CR) acceleration at reverse shocks of ultrafast outflows (UFOs) from active galactic nuclei (AGN). Previous kinetic studies by particle-in-cell simulations have demonstrated that when maximum CR energy is near the injection scale, NRH instability efficiently amplifies magnetic field up to the saturation level. However, the efficiency of NRH instability goes down as maximum energy increase since CR current is carried by escaping CRs near the maximum energy. We employ a one-dimensional MHD--CR framework solving telegraph-type diffusion--convection equations to trace the coupled evolution of CRs, magnetic fields, and shock dynamics under realistic parameters. We find a distinct transition with magnetic field strength: for weak background fields (B_{0}!lesssim!10^{-4},G), NRH instability efficiently amplifies upstream turbulence, driving a self-regulated state where E_{max} becomes independent of initial strength of magnetic turbulence. In contrast, for stronger background fields (B_{0}!gtrsim!10^{-3},G), the escaping CR current is too weak to drive NRH instability, and magnetic turbulence further decays through parametric instabilities, potentially reducing the acceleration efficiency. We give the physical interpretation for the transition and discuss conditions for PeV--EeV acceleration at UFO reverse shocks.

  • 2 authors
·
Oct 15, 2025

Strong pairing and symmetric pseudogap metal in double Kondo lattice model: from nickelate superconductor to tetralayer optical lattice

In this work, we propose and study a double Kondo lattice model which hosts robust superconductivity. The system consists of two identical Kondo lattice model, each with Kondo coupling J_K within each layer, while the localized spin moments are coupled together via an inter-layer on-site antiferromagnetic spin coupling J_perp. We consider the strong J_perp limit, wherein the local moments tend to form rung singlets and are thus gapped. However, the Kondo coupling J_K transmits the inter-layer entanglement between the local moments to the itinerant electrons. Consequently, the itinerant electrons experience a strong inter-layer antiferromangetic spin coupling and form strong inter-layer pairing, which is confirmed through numerical simulation in one dimensional system. Experimentally, the J_K rightarrow -infty limits of the model describes the recently found bilayer nickelate La_3Ni_2O_7, while the J_K>0 side can be realized in tetralayer optical lattice of cold atoms. Two extreme limits, J_K rightarrow -infty and J_K rightarrow +infty limit are shown to be simplified to a bilayer type II t-J model and a bilayer one-orbital t-J model, respectively. Thus, our double Kondo lattice model offers a unified framework for nickelate superconductor and tetralayer optical lattice quantum simulator upon changing the sign of J_K. We highlight both the qualitative similarity and the quantitative difference in the two sides of J_K. Finally, we discuss the possibility of a symmetric Kondo breakdown transition in the model with a symmetric pseudogap metal corresponding to the usual heavy Fermi liquid.

  • 3 authors
·
Aug 2, 2024

sangkuriang: A pseudo-spectral Python library for Korteweg-de Vries soliton simulation

The Korteweg-de Vries (KdV) equation serves as a foundational model in nonlinear wave physics, describing the balance between dispersive spreading and nonlinear steepening that gives rise to solitons. This article introduces sangkuriang, an open-source Python library for solving this equation using Fourier pseudo-spectral spatial discretization coupled with adaptive high-order time integration. The implementation leverages just-in-time (JIT) compilation for computational efficiency while maintaining accessibility for instructional purposes. Validation encompasses progressively complex scenarios including isolated soliton propagation, symmetric two-wave configurations, overtaking collisions between waves of differing amplitudes, and three-body interactions. Conservation of the classical invariants is monitored throughout, with deviations remaining small across all test cases. Measured soliton velocities conform closely to theoretical predictions based on the amplitude-velocity relationship characteristic of integrable systems. Complementary diagnostics drawn from information theory and recurrence analysis confirm that computed solutions preserve the regular phase-space structure expected for completely integrable dynamics. The solver outputs data in standard scientific formats compatible with common analysis tools and generates visualizations of spatiotemporal wave evolution. By combining numerical accuracy with practical accessibility on modest computational resources, sangkuriang offers a platform suitable for both classroom demonstrations of nonlinear wave phenomena and exploratory research into soliton dynamics.

  • 4 authors
·
Jan 17 2