new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

HelpSteer2: Open-source dataset for training top-performing reward models

High-quality preference datasets are essential for training reward models that can effectively guide large language models (LLMs) in generating high-quality responses aligned with human preferences. As LLMs become stronger and better aligned, permissively licensed preference datasets, such as Open Assistant, HH-RLHF, and HelpSteer need to be updated to remain effective for reward modeling. Methods that distil preference data from proprietary LLMs such as GPT-4 have restrictions on commercial usage imposed by model providers. To improve upon both generated responses and attribute labeling quality, we release HelpSteer2, a permissively licensed preference dataset (CC-BY-4.0). Using a powerful internal base model trained on HelpSteer2, we are able to achieve the SOTA score (92.0%) on Reward-Bench's primary dataset, outperforming currently listed open and proprietary models, as of June 12th, 2024. Notably, HelpSteer2 consists of only ten thousand response pairs, an order of magnitude fewer than existing preference datasets (e.g., HH-RLHF), which makes it highly efficient for training reward models. Our extensive experiments demonstrate that reward models trained with HelpSteer2 are effective in aligning LLMs. In particular, we propose SteerLM 2.0, a model alignment approach that can effectively make use of the rich multi-attribute score predicted by our reward models. HelpSteer2 is available at https://huggingface.co/datasets/nvidia/HelpSteer2 and code is available at https://github.com/NVIDIA/NeMo-Aligner

  • 9 authors
·
Jun 12, 2024 3

Measuring Physical-World Privacy Awareness of Large Language Models: An Evaluation Benchmark

The deployment of Large Language Models (LLMs) in embodied agents creates an urgent need to measure their privacy awareness in the physical world. Existing evaluation methods, however, are confined to natural language based scenarios. To bridge this gap, we introduce EAPrivacy, a comprehensive evaluation benchmark designed to quantify the physical-world privacy awareness of LLM-powered agents. EAPrivacy utilizes procedurally generated scenarios across four tiers to test an agent's ability to handle sensitive objects, adapt to changing environments, balance task execution with privacy constraints, and resolve conflicts with social norms. Our measurements reveal a critical deficit in current models. The top-performing model, Gemini 2.5 Pro, achieved only 59\% accuracy in scenarios involving changing physical environments. Furthermore, when a task was accompanied by a privacy request, models prioritized completion over the constraint in up to 86\% of cases. In high-stakes situations pitting privacy against critical social norms, leading models like GPT-4o and Claude-3.5-haiku disregarded the social norm over 15\% of the time. These findings, demonstrated by our benchmark, underscore a fundamental misalignment in LLMs regarding physically grounded privacy and establish the need for more robust, physically-aware alignment. Codes and datasets will be available at https://github.com/Graph-COM/EAPrivacy.

SimPO: Simple Preference Optimization with a Reference-Free Reward

Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further enhancing the algorithm's performance. We compare SimPO to DPO and its latest variants across various state-of-the-art training setups, including both base and instruction-tuned models like Mistral and Llama3. We evaluated on extensive instruction-following benchmarks, including AlpacaEval 2, MT-Bench, and the recent challenging Arena-Hard benchmark. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Llama3-8B-Instruct, achieves a remarkable 44.7 length-controlled win rate on AlpacaEval 2 -- surpassing Claude 3 Opus on the leaderboard, and a 33.8 win rate on Arena-Hard -- making it the strongest 8B open-source model.

  • 3 authors
·
May 23, 2024 1

OpenMedLM: Prompt engineering can out-perform fine-tuning in medical question-answering with open-source large language models

LLMs have become increasingly capable at accomplishing a range of specialized-tasks and can be utilized to expand equitable access to medical knowledge. Most medical LLMs have involved extensive fine-tuning, leveraging specialized medical data and significant, thus costly, amounts of computational power. Many of the top performing LLMs are proprietary and their access is limited to very few research groups. However, open-source (OS) models represent a key area of growth for medical LLMs due to significant improvements in performance and an inherent ability to provide the transparency and compliance required in healthcare. We present OpenMedLM, a prompting platform which delivers state-of-the-art (SOTA) performance for OS LLMs on medical benchmarks. We evaluated a range of OS foundation LLMs (7B-70B) on four medical benchmarks (MedQA, MedMCQA, PubMedQA, MMLU medical-subset). We employed a series of prompting strategies, including zero-shot, few-shot, chain-of-thought (random selection and kNN selection), and ensemble/self-consistency voting. We found that OpenMedLM delivers OS SOTA results on three common medical LLM benchmarks, surpassing the previous best performing OS models that leveraged computationally costly extensive fine-tuning. The model delivers a 72.6% accuracy on the MedQA benchmark, outperforming the previous SOTA by 2.4%, and achieves 81.7% accuracy on the MMLU medical-subset, establishing itself as the first OS LLM to surpass 80% accuracy on this benchmark. Our results highlight medical-specific emergent properties in OS LLMs which have not yet been documented to date elsewhere, and showcase the benefits of further leveraging prompt engineering to improve the performance of accessible LLMs for medical applications.

  • 10 authors
·
Feb 29, 2024

MSF: Motion-guided Sequential Fusion for Efficient 3D Object Detection from Point Cloud Sequences

Point cloud sequences are commonly used to accurately detect 3D objects in applications such as autonomous driving. Current top-performing multi-frame detectors mostly follow a Detect-and-Fuse framework, which extracts features from each frame of the sequence and fuses them to detect the objects in the current frame. However, this inevitably leads to redundant computation since adjacent frames are highly correlated. In this paper, we propose an efficient Motion-guided Sequential Fusion (MSF) method, which exploits the continuity of object motion to mine useful sequential contexts for object detection in the current frame. We first generate 3D proposals on the current frame and propagate them to preceding frames based on the estimated velocities. The points-of-interest are then pooled from the sequence and encoded as proposal features. A novel Bidirectional Feature Aggregation (BiFA) module is further proposed to facilitate the interactions of proposal features across frames. Besides, we optimize the point cloud pooling by a voxel-based sampling technique so that millions of points can be processed in several milliseconds. The proposed MSF method achieves not only better efficiency than other multi-frame detectors but also leading accuracy, with 83.12% and 78.30% mAP on the LEVEL1 and LEVEL2 test sets of Waymo Open Dataset, respectively. Codes can be found at https://github.com/skyhehe123/MSF.

  • 5 authors
·
Mar 14, 2023

PalmX 2025: The First Shared Task on Benchmarking LLMs on Arabic and Islamic Culture

Large Language Models (LLMs) inherently reflect the vast data distributions they encounter during their pre-training phase. As this data is predominantly sourced from the web, there is a high chance it will be skewed towards high-resourced languages and cultures, such as those of the West. Consequently, LLMs often exhibit a diminished understanding of certain communities, a gap that is particularly evident in their knowledge of Arabic and Islamic cultures. This issue becomes even more pronounced with increasingly under-represented topics. To address this critical challenge, we introduce PalmX 2025, the first shared task designed to benchmark the cultural competence of LLMs in these specific domains. The task is composed of two subtasks featuring multiple-choice questions (MCQs) in Modern Standard Arabic (MSA): General Arabic Culture and General Islamic Culture. These subtasks cover a wide range of topics, including traditions, food, history, religious practices, and language expressions from across 22 Arab countries. The initiative drew considerable interest, with 26 teams registering for Subtask 1 and 19 for Subtask 2, culminating in nine and six valid submissions, respectively. Our findings reveal that task-specific fine-tuning substantially boosts performance over baseline models. The top-performing systems achieved an accuracy of 72.15% on cultural questions and 84.22% on Islamic knowledge. Parameter-efficient fine-tuning emerged as the predominant and most effective approach among participants, while the utility of data augmentation was found to be domain-dependent.

  • 6 authors
·
Sep 2

The Avengers: A Simple Recipe for Uniting Smaller Language Models to Challenge Proprietary Giants

As proprietary giants increasingly dominate the race for ever-larger language models, a pressing question arises for the open-source community: can smaller models remain competitive across a broad range of tasks? In this paper, we present the Avengers--a simple recipe that effectively leverages the collective intelligence of open-source, smaller language models. Our framework is built upon four lightweight operations: (i) embedding: encode queries using a text embedding model; (ii) clustering: group queries based on their semantic similarity; (iii) scoring: scores each model's performance within each cluster; and (iv) voting: improve outputs via repeated sampling and voting. At inference time, each query is embedded and assigned to its nearest cluster. The top-performing model(s) within that cluster are selected to generate the response using the Self-Consistency or its multi-model variant. Remarkably, with 10 open-source models (~7B parameters each), the Avengers collectively outperforms GPT-4.1 on 10 out of 15 datasets (spanning mathematics, code, logic, knowledge, and affective tasks). In particular, it surpasses GPT-4.1 on mathematics tasks by 18.21% and on code tasks by 7.46%. Furthermore, the Avengers delivers superior out-of-distribution generalization, and remains robust across various embedding models, clustering algorithms, ensemble strategies, and values of its sole parameter--the number of clusters. We have open-sourced the code on GitHub: https://github.com/ZhangYiqun018/Avengers

  • 14 authors
·
May 26

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Tabular data, a fundamental data format in machine learning, is predominantly utilized in competitions and real-world applications. The performance of tabular models--such as gradient boosted decision trees and neural networks--can vary significantly across datasets due to differences in feature distributions and task characteristics. Achieving top performance on each dataset often requires specialized expert knowledge. To address this variability, practitioners often aggregate the predictions of multiple models. However, conventional aggregation strategies typically rely on static combination rules and lack instance-level adaptability. In this work, we propose an in-context ensemble framework for tabular prediction that leverages large language models (LLMs) to perform dynamic, instance-specific integration of external model predictions. Without access to raw tabular features or semantic information, our method constructs a context around each test instance using its nearest neighbors and the predictions from a pool of external models. Within this enriched context, we introduce Chain of Tabular Thoughts (CoT^2), a prompting strategy that guides LLMs through multi-step, interpretable reasoning, making still further progress toward expert-level decision-making. Experimental results show that our method outperforms well-tuned baselines and standard ensemble techniques across a wide range of tabular datasets.

  • 3 authors
·
May 19

Application of Quantum Tensor Networks for Protein Classification

We show that protein sequences can be thought of as sentences in natural language processing and can be parsed using the existing Quantum Natural Language framework into parameterized quantum circuits of reasonable qubits, which can be trained to solve various protein-related machine-learning problems. We classify proteins based on their subcellular locations, a pivotal task in bioinformatics that is key to understanding biological processes and disease mechanisms. Leveraging the quantum-enhanced processing capabilities, we demonstrate that Quantum Tensor Networks (QTN) can effectively handle the complexity and diversity of protein sequences. We present a detailed methodology that adapts QTN architectures to the nuanced requirements of protein data, supported by comprehensive experimental results. We demonstrate two distinct QTNs, inspired by classical recurrent neural networks (RNN) and convolutional neural networks (CNN), to solve the binary classification task mentioned above. Our top-performing quantum model has achieved a 94% accuracy rate, which is comparable to the performance of a classical model that uses the ESM2 protein language model embeddings. It's noteworthy that the ESM2 model is extremely large, containing 8 million parameters in its smallest configuration, whereas our best quantum model requires only around 800 parameters. We demonstrate that these hybrid models exhibit promising performance, showcasing their potential to compete with classical models of similar complexity.

  • 6 authors
·
Mar 11, 2024

Mixed Precision Training of Convolutional Neural Networks using Integer Operations

The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular, FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research has also happened in the domain of low and mixed-precision Integer training, these works either present results for non-SOTA networks (for instance only AlexNet for ImageNet-1K), or relatively small datasets (like CIFAR-10). In this work, we train state-of-the-art visual understanding neural networks on the ImageNet-1K dataset, with Integer operations on General Purpose (GP) hardware. In particular, we focus on Integer Fused-Multiply-and-Accumulate (FMA) operations which take two pairs of INT16 operands and accumulate results into an INT32 output.We propose a shared exponent representation of tensors and develop a Dynamic Fixed Point (DFP) scheme suitable for common neural network operations. The nuances of developing an efficient integer convolution kernel is examined, including methods to handle overflow of the INT32 accumulator. We implement CNN training for ResNet-50, GoogLeNet-v1, VGG-16 and AlexNet; and these networks achieve or exceed SOTA accuracy within the same number of iterations as their FP32 counterparts without any change in hyper-parameters and with a 1.8X improvement in end-to-end training throughput. To the best of our knowledge these results represent the first INT16 training results on GP hardware for ImageNet-1K dataset using SOTA CNNs and achieve highest reported accuracy using half-precision

  • 17 authors
·
Feb 3, 2018

Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction

We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.

From Medprompt to o1: Exploration of Run-Time Strategies for Medical Challenge Problems and Beyond

Run-time steering strategies like Medprompt are valuable for guiding large language models (LLMs) to top performance on challenging tasks. Medprompt demonstrates that a general LLM can be focused to deliver state-of-the-art performance on specialized domains like medicine by using a prompt to elicit a run-time strategy involving chain of thought reasoning and ensembling. OpenAI's o1-preview model represents a new paradigm, where a model is designed to do run-time reasoning before generating final responses. We seek to understand the behavior of o1-preview on a diverse set of medical challenge problem benchmarks. Following on the Medprompt study with GPT-4, we systematically evaluate the o1-preview model across various medical benchmarks. Notably, even without prompting techniques, o1-preview largely outperforms the GPT-4 series with Medprompt. We further systematically study the efficacy of classic prompt engineering strategies, as represented by Medprompt, within the new paradigm of reasoning models. We found that few-shot prompting hinders o1's performance, suggesting that in-context learning may no longer be an effective steering approach for reasoning-native models. While ensembling remains viable, it is resource-intensive and requires careful cost-performance optimization. Our cost and accuracy analysis across run-time strategies reveals a Pareto frontier, with GPT-4o representing a more affordable option and o1-preview achieving state-of-the-art performance at higher cost. Although o1-preview offers top performance, GPT-4o with steering strategies like Medprompt retains value in specific contexts. Moreover, we note that the o1-preview model has reached near-saturation on many existing medical benchmarks, underscoring the need for new, challenging benchmarks. We close with reflections on general directions for inference-time computation with LLMs.

  • 7 authors
·
Nov 5, 2024 1

Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding

Image pyramids are widely adopted in top-performing methods to obtain multi-scale features for precise visual perception and understanding. However, current image pyramids use the same large-scale model to process multiple resolutions of images, leading to significant computational cost. To address this challenge, we propose a novel network architecture, called Parameter-Inverted Image Pyramid Networks (PIIP). Specifically, PIIP uses pretrained models (ViTs or CNNs) as branches to process multi-scale images, where images of higher resolutions are processed by smaller network branches to balance computational cost and performance. To integrate information from different spatial scales, we further propose a novel cross-branch feature interaction mechanism. To validate PIIP, we apply it to various perception models and a representative multimodal large language model called LLaVA, and conduct extensive experiments on various tasks such as object detection, segmentation, image classification and multimodal understanding. PIIP achieves superior performance compared to single-branch and existing multi-resolution approaches with lower computational cost. When applied to InternViT-6B, a large-scale vision foundation model, PIIP can improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation, finally achieving 60.0 box AP on MS COCO and 59.7 mIoU on ADE20K. For multimodal understanding, our PIIP-LLaVA achieves 73.0% accuracy on TextVQA and 74.5% on MMBench with only 2.8M training data. Our code is released at https://github.com/OpenGVLab/PIIP.

  • 11 authors
·
Jan 13 2

Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs

Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in many vision-language tasks. Nevertheless, most MLLMs still lack the Referential Comprehension (RC) ability to identify a specific object or area in images, limiting their application in fine-grained perception tasks. This paper proposes a novel method to enhance the RC capability for MLLMs. Our model represents the referring object in the image using the coordinates of its bounding box and converts the coordinates into texts in a specific format. This allows the model to treat the coordinates as natural language. Moreover, we construct the instruction tuning dataset with various designed RC tasks at a low cost by unleashing the potential of annotations in existing datasets. To further boost the RC ability of the model, we propose a self-consistent bootstrapping method that extends dense object annotations of a dataset into high-quality referring-expression-bounding-box pairs. The model is trained end-to-end with a parameter-efficient tuning framework that allows both modalities to benefit from multi-modal instruction tuning. This framework requires fewer trainable parameters and less training data. Experimental results on conventional vision-language and RC tasks demonstrate the superior performance of our method. For instance, our model exhibits a 12.0% absolute accuracy improvement over Instruct-BLIP on VSR and surpasses Kosmos-2 by 24.7% on RefCOCO_val under zero-shot settings. We also attain the top position on the leaderboard of MMBench. The models, datasets, and codes are publicly available at https://github.com/SY-Xuan/Pink

  • 4 authors
·
Oct 1, 2023

PitVis-2023 Challenge: Workflow Recognition in videos of Endoscopic Pituitary Surgery

The field of computer vision applied to videos of minimally invasive surgery is ever-growing. Workflow recognition pertains to the automated recognition of various aspects of a surgery: including which surgical steps are performed; and which surgical instruments are used. This information can later be used to assist clinicians when learning the surgery; during live surgery; and when writing operation notes. The Pituitary Vision (PitVis) 2023 Challenge tasks the community to step and instrument recognition in videos of endoscopic pituitary surgery. This is a unique task when compared to other minimally invasive surgeries due to the smaller working space, which limits and distorts vision; and higher frequency of instrument and step switching, which requires more precise model predictions. Participants were provided with 25-videos, with results presented at the MICCAI-2023 conference as part of the Endoscopic Vision 2023 Challenge in Vancouver, Canada, on 08-Oct-2023. There were 18-submissions from 9-teams across 6-countries, using a variety of deep learning models. A commonality between the top performing models was incorporating spatio-temporal and multi-task methods, with greater than 50% and 10% macro-F1-score improvement over purely spacial single-task models in step and instrument recognition respectively. The PitVis-2023 Challenge therefore demonstrates state-of-the-art computer vision models in minimally invasive surgery are transferable to a new dataset, with surgery specific techniques used to enhance performance, progressing the field further. Benchmark results are provided in the paper, and the dataset is publicly available at: https://doi.org/10.5522/04/26531686.

  • 32 authors
·
Sep 2, 2024

LLMs vs. Chinese Anime Enthusiasts: A Comparative Study on Emotionally Supportive Role-Playing

Large Language Models (LLMs) have demonstrated impressive capabilities in role-playing conversations and providing emotional support as separate research directions. However, there remains a significant research gap in combining these capabilities to enable emotionally supportive interactions with virtual characters. To address this research gap, we focus on anime characters as a case study because of their well-defined personalities and large fan bases. This choice enables us to effectively evaluate how well LLMs can provide emotional support while maintaining specific character traits. We introduce ChatAnime, the first Emotionally Supportive Role-Playing (ESRP) dataset. We first thoughtfully select 20 top-tier characters from popular anime communities and design 60 emotion-centric real-world scenario questions. Then, we execute a nationwide selection process to identify 40 Chinese anime enthusiasts with profound knowledge of specific characters and extensive experience in role-playing. Next, we systematically collect two rounds of dialogue data from 10 LLMs and these 40 Chinese anime enthusiasts. To evaluate the ESRP performance of LLMs, we design a user experience-oriented evaluation system featuring 9 fine-grained metrics across three dimensions: basic dialogue, role-playing and emotional support, along with an overall metric for response diversity. In total, the dataset comprises 2,400 human-written and 24,000 LLM-generated answers, supported by over 132,000 human annotations. Experimental results show that top-performing LLMs surpass human fans in role-playing and emotional support, while humans still lead in response diversity. We hope this work can provide valuable resources and insights for future research on optimizing LLMs in ESRP. Our datasets are available at https://github.com/LanlanQiu/ChatAnime.

  • 4 authors
·
Aug 8

Worse than Random? An Embarrassingly Simple Probing Evaluation of Large Multimodal Models in Medical VQA

Large Multimodal Models (LMMs) have shown remarkable progress in the field of medical Visual Question Answering (Med-VQA), achieving high accuracy on existing benchmarks. However, their reliability under robust evaluation is questionable. This study reveals that state-of-the-art models, when subjected to simple probing evaluation, perform worse than random guessing on medical diagnosis questions. To address this critical evaluation problem, we introduce the Probing Evaluation for Medical Diagnosis (ProbMed) dataset to rigorously assess LMM performance in medical imaging through probing evaluation and procedural diagnosis. Particularly, probing evaluation features pairing original questions with negation questions with hallucinated attributes, while procedural diagnosis requires reasoning across various diagnostic dimensions for each image, including modality recognition, organ identification, clinical findings, abnormalities, and positional grounding. Our evaluation reveals that top-performing models like GPT-4V and Gemini Pro perform worse than random guessing on specialized diagnostic questions, indicating significant limitations in handling fine-grained medical inquiries. Besides, models like LLaVA-Med struggle even with more general questions, and results from CheXagent demonstrate the transferability of expertise across different modalities of the same organ, showing that specialized domain knowledge is still crucial for improving performance. This study underscores the urgent need for more robust evaluation to ensure the reliability of LMMs in critical fields like medical diagnosis, and current LMMs are still far from applicable to those fields.

  • 4 authors
·
May 30, 2024

The Hyperfitting Phenomenon: Sharpening and Stabilizing LLMs for Open-Ended Text Generation

This paper introduces the counter-intuitive generalization results of overfitting pre-trained large language models (LLMs) on very small datasets. In the setting of open-ended text generation, it is well-documented that LLMs tend to generate repetitive and dull sequences, a phenomenon that is especially apparent when generating using greedy decoding. This issue persists even with state-of-the-art LLMs containing billions of parameters, trained via next-token prediction on large datasets. We find that by further fine-tuning these models to achieve a near-zero training loss on a small set of samples -- a process we refer to as hyperfitting -- the long-sequence generative capabilities are greatly enhanced. Greedy decoding with these Hyperfitted models even outperform Top-P sampling over long-sequences, both in terms of diversity and human preferences. This phenomenon extends to LLMs of various sizes, different domains, and even autoregressive image generation. We further find this phenomena to be distinctly different from that of Grokking and double descent. Surprisingly, our experiments indicate that hyperfitted models rarely fall into repeating sequences they were trained on, and even explicitly blocking these sequences results in high-quality output. All hyperfitted models produce extremely low-entropy predictions, often allocating nearly all probability to a single token.

  • 5 authors
·
Dec 5, 2024

UA-Code-Bench: A Competitive Programming Benchmark for Evaluating LLM Code Generation in Ukrainian

Evaluating the real capabilities of large language models in low-resource languages still represents a challenge, as many existing benchmarks focus on widespread tasks translated from English or evaluate only simple language understanding. This paper introduces UA-Code-Bench, a new open-source benchmark established for a thorough evaluation of language models' code generation and competitive programming problem-solving abilities in Ukrainian. The benchmark comprises 500 problems from the Eolymp platform, evenly distributed across five complexity levels from very easy to very hard. A diverse set of 13 leading proprietary and open-source models, generating Python solutions based on a one-shot prompt, was evaluated via the dedicated Eolymp environment against hidden tests, ensuring code correctness. The obtained results reveal that even top-performing models, such as OpenAI o3 and GPT-5, solve only half of the problems, highlighting the challenge of code generation in low-resource natural language. Furthermore, this research presents a comprehensive analysis of performance across various difficulty levels, as well as an assessment of solution uniqueness and computational efficiency, measured by both elapsed time and memory consumption of the generated solutions. In conclusion, this work demonstrates the value of competitive programming benchmarks in evaluating large language models, especially in underrepresented languages. It also paves the way for future research on multilingual code generation and reasoning-enhanced models. The benchmark, data parsing, preparation, code generation, and evaluation scripts are available at https://huggingface.co/datasets/NLPForUA/ua-code-bench.

  • 2 authors
·
Nov 7

Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models

Despite recent advances demonstrating vision-language models' (VLMs) abilities to describe complex relationships in images using natural language, their capability to quantitatively reason about object sizes and distances remains underexplored. In this work, we introduce a manually annotated benchmark, Q-Spatial Bench, with 271 questions across five categories designed for quantitative spatial reasoning and systematically investigate the performance of state-of-the-art VLMs on this task. Our analysis reveals that reasoning about distances between objects is particularly challenging for SoTA VLMs; however, some VLMs significantly outperform others, with an over 40-point gap between the two best performing models. We also make the surprising observation that the success rate of the top-performing VLM increases by 19 points when a reasoning path using a reference object emerges naturally in the response. Inspired by this observation, we develop a zero-shot prompting technique, SpatialPrompt, that encourages VLMs to answer quantitative spatial questions using reference objects as visual cues. By instructing VLMs to use reference objects in their reasoning paths via SpatialPrompt, Gemini 1.5 Pro, Gemini 1.5 Flash, and GPT-4V improve their success rates by over 40, 20, and 30 points, respectively. We emphasize that these significant improvements are obtained without needing more data, model architectural modifications, or fine-tuning.

  • 4 authors
·
Sep 15, 2024

Phikon-v2, A large and public feature extractor for biomarker prediction

Gathering histopathology slides from over 100 publicly available cohorts, we compile a diverse dataset of 460 million pathology tiles covering more than 30 cancer sites. Using this dataset, we train a large self-supervised vision transformer using DINOv2 and publicly release one iteration of this model for further experimentation, coined Phikon-v2. While trained on publicly available histology slides, Phikon-v2 surpasses our previously released model (Phikon) and performs on par with other histopathology foundation models (FM) trained on proprietary data. Our benchmarks include eight slide-level tasks with results reported on external validation cohorts avoiding any data contamination between pre-training and evaluation datasets. Our downstream training procedure follows a simple yet robust ensembling strategy yielding a +1.75 AUC increase across tasks and models compared to one-shot retraining (p<0.001). We compare Phikon (ViT-B) and Phikon-v2 (ViT-L) against 14 different histology feature extractors, making our evaluation the most comprehensive to date. Our result support evidences that DINOv2 handles joint model and data scaling better than iBOT. Also, we show that recent scaling efforts are overall beneficial to downstream performance in the context of biomarker prediction with GigaPath and H-Optimus-0 (two ViT-g with 1.1B parameters each) standing out. However, the statistical margins between the latest top-performing FMs remain mostly non-significant; some even underperform on specific indications or tasks such as MSI prediction - deposed by a 13x smaller model developed internally. While latest foundation models may exhibit limitations for clinical deployment, they nonetheless offer excellent grounds for the development of more specialized and cost-efficient histology encoders fueling AI-guided diagnostic tools.

  • 4 authors
·
Sep 13, 2024

AI Predicts AGI: Leveraging AGI Forecasting and Peer Review to Explore LLMs' Complex Reasoning Capabilities

We tasked 16 state-of-the-art large language models (LLMs) with estimating the likelihood of Artificial General Intelligence (AGI) emerging by 2030. To assess the quality of these forecasts, we implemented an automated peer review process (LLM-PR). The LLMs' estimates varied widely, ranging from 3% (Reka- Core) to 47.6% (GPT-4o), with a median of 12.5%. These estimates closely align with a recent expert survey that projected a 10% likelihood of AGI by 2027, underscoring the relevance of LLMs in forecasting complex, speculative scenarios. The LLM-PR process demonstrated strong reliability, evidenced by a high Intraclass Correlation Coefficient (ICC = 0.79), reflecting notable consistency in scoring across the models. Among the models, Pplx-70b-online emerged as the top performer, while Gemini-1.5-pro-api ranked the lowest. A cross-comparison with external benchmarks, such as LMSYS Chatbot Arena, revealed that LLM rankings remained consistent across different evaluation methods, suggesting that existing benchmarks may not encapsulate some of the skills relevant for AGI prediction. We further explored the use of weighting schemes based on external benchmarks, optimizing the alignment of LLMs' predictions with human expert forecasts. This analysis led to the development of a new, 'AGI benchmark' designed to highlight performance differences in AGI-related tasks. Our findings offer insights into LLMs' capabilities in speculative, interdisciplinary forecasting tasks and emphasize the growing need for innovative evaluation frameworks for assessing AI performance in complex, uncertain real-world scenarios.

  • 3 authors
·
Dec 12, 2024

DynaSaur: Large Language Agents Beyond Predefined Actions

Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in https://github.com/adobe-research/dynasaur{https://github.com/adobe-research/dynasaur}.

  • 12 authors
·
Nov 3, 2024 3

ERA: Transforming VLMs into Embodied Agents via Embodied Prior Learning and Online Reinforcement Learning

Recent advances in embodied AI highlight the potential of vision language models (VLMs) as agents capable of perception, reasoning, and interaction in complex environments. However, top-performing systems rely on large-scale models that are costly to deploy, while smaller VLMs lack the necessary knowledge and skills to succeed. To bridge this gap, we present Embodied Reasoning Agent (ERA), a two-stage framework that integrates prior knowledge learning and online reinforcement learning (RL). The first stage, Embodied Prior Learning, distills foundational knowledge from three types of data: (1) Trajectory-Augmented Priors, which enrich existing trajectory data with structured reasoning generated by stronger models; (2) Environment-Anchored Priors, which provide in-environment knowledge and grounding supervision; and (3) External Knowledge Priors, which transfer general knowledge from out-of-environment datasets. In the second stage, we develop an online RL pipeline that builds on these priors to further enhance agent performance. To overcome the inherent challenges in agent RL, including long horizons, sparse rewards, and training instability, we introduce three key designs: self-summarization for context management, dense reward shaping, and turn-level policy optimization. Extensive experiments on both high-level planning (EB-ALFRED) and low-level control (EB-Manipulation) tasks demonstrate that ERA-3B surpasses both prompting-based large models and previous training-based baselines. Specifically, it achieves overall improvements of 8.4\% on EB-ALFRED and 19.4\% on EB-Manipulation over GPT-4o, and exhibits strong generalization to unseen tasks. Overall, ERA offers a practical path toward scalable embodied intelligence, providing methodological insights for future embodied AI systems.

A Practical Two-Stage Recipe for Mathematical LLMs: Maximizing Accuracy with SFT and Efficiency with Reinforcement Learning

Enhancing the mathematical reasoning of Large Language Models (LLMs) is a pivotal challenge in advancing AI capabilities. While Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are the dominant training paradigms, a systematic methodology for combining them to maximize both accuracy and efficiency remains largely unexplored. This paper introduces a practical and effective training recipe that strategically integrates extended SFT with RL from online inference (GRPO). We posit that these methods play complementary, not competing, roles: a prolonged SFT phase first pushes the model's accuracy to its limits, after which a GRPO phase dramatically improves token efficiency while preserving this peak performance. Our experiments reveal that extending SFT for as many as 10 epochs is crucial for performance breakthroughs, and that the primary role of GRPO in this framework is to optimize solution length. The efficacy of our recipe is rigorously validated through top-tier performance on challenging benchmarks, including a high rank among over 2,200 teams in the strictly leak-free AI Mathematical Olympiad (AIMO). This work provides the community with a battle-tested blueprint for developing state-of-the-art mathematical reasoners that are both exceptionally accurate and practically efficient. To ensure full reproducibility and empower future research, we will open-source our entire framework, including all code, model checkpoints, and training configurations at https://github.com/analokmaus/kaggle-aimo2-fast-math-r1.

  • 3 authors
·
Jul 10 2

RTV-Bench: Benchmarking MLLM Continuous Perception, Understanding and Reasoning through Real-Time Video

Multimodal Large Language Models (MLLMs) increasingly excel at perception, understanding, and reasoning. However, current benchmarks inadequately evaluate their ability to perform these tasks continuously in dynamic, real-world environments. To bridge this gap, we introduce RTV-Bench, a fine-grained benchmark for MLLM real-time video analysis. RTV-Bench uses three key principles: (1) Multi-Timestamp Question Answering (MTQA), where answers evolve with scene changes; (2) Hierarchical Question Structure, combining basic and advanced queries; and (3) Multi-dimensional Evaluation, assessing the ability of continuous perception, understanding, and reasoning. RTV-Bench contains 552 diverse videos (167.2 hours) and 4,631 high-quality QA pairs. We evaluated leading MLLMs, including proprietary (GPT-4o, Gemini 2.0), open-source offline (Qwen2.5-VL, VideoLLaMA3), and open-source real-time (VITA-1.5, InternLM-XComposer2.5-OmniLive) models. Experiment results show open-source real-time models largely outperform offline ones but still trail top proprietary models. Our analysis also reveals that larger model size or higher frame sampling rates do not significantly boost RTV-Bench performance, sometimes causing slight decreases. This underscores the need for better model architectures optimized for video stream processing and long sequences to advance real-time video analysis with MLLMs. Our benchmark toolkit is available at: https://github.com/LJungang/RTV-Bench.

  • 14 authors
·
May 4

MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm

We introduce MonkeyOCR, a vision-language model for document parsing that advances the state of the art by leveraging a Structure-Recognition-Relation (SRR) triplet paradigm. This design simplifies what would otherwise be a complex multi-tool pipeline (as in MinerU's modular approach) and avoids the inefficiencies of processing full pages with giant end-to-end models (e.g., large multimodal LLMs like Qwen-VL). In SRR, document parsing is abstracted into three fundamental questions - "Where is it?" (structure), "What is it?" (recognition), and "How is it organized?" (relation) - corresponding to layout analysis, content identification, and logical ordering. This focused decomposition balances accuracy and speed: it enables efficient, scalable processing without sacrificing precision. To train and evaluate this approach, we introduce the MonkeyDoc (the most comprehensive document parsing dataset to date), with 3.9 million instances spanning over ten document types in both Chinese and English. Experiments show that MonkeyOCR outperforms MinerU by an average of 5.1%, with particularly notable improvements on challenging content such as formulas (+15.0%) and tables (+8.6%). Remarkably, our 3B-parameter model surpasses much larger and top-performing models, including Qwen2.5-VL (72B) and Gemini 2.5 Pro, achieving state-of-the-art average performance on English document parsing tasks. In addition, MonkeyOCR processes multi-page documents significantly faster (0.84 pages per second compared to 0.65 for MinerU and 0.12 for Qwen2.5-VL-7B). The 3B model can be efficiently deployed for inference on a single NVIDIA 3090 GPU. Code and models will be released at https://github.com/Yuliang-Liu/MonkeyOCR.

PathMMU: A Massive Multimodal Expert-Level Benchmark for Understanding and Reasoning in Pathology

The emergence of large multimodal models has unlocked remarkable potential in AI, particularly in pathology. However, the lack of specialized, high-quality benchmark impeded their development and precise evaluation. To address this, we introduce PathMMU, the largest and highest-quality expert-validated pathology benchmark for LMMs. It comprises 33,573 multimodal multi-choice questions and 21,599 images from various sources, and an explanation for the correct answer accompanies each question. The construction of PathMMU capitalizes on the robust capabilities of GPT-4V, utilizing approximately 30,000 gathered image-caption pairs to generate Q\&As. Significantly, to maximize PathMMU's authority, we invite six pathologists to scrutinize each question under strict standards in PathMMU's validation and test sets, while simultaneously setting an expert-level performance benchmark for PathMMU. We conduct extensive evaluations, including zero-shot assessments of 14 open-sourced and three closed-sourced LMMs and their robustness to image corruption. We also fine-tune representative LMMs to assess their adaptability to PathMMU. The empirical findings indicate that advanced LMMs struggle with the challenging PathMMU benchmark, with the top-performing LMM, GPT-4V, achieving only a 51.7\% zero-shot performance, significantly lower than the 71.4\% demonstrated by human pathologists. After fine-tuning, even open-sourced LMMs can surpass GPT-4V with a performance of over 60\%, but still fall short of the expertise shown by pathologists. We hope that the PathMMU will offer valuable insights and foster the development of more specialized, next-generation LLMs for pathology.

  • 13 authors
·
Jan 29, 2024

PIGEON: Predicting Image Geolocations

Planet-scale image geolocalization remains a challenging problem due to the diversity of images originating from anywhere in the world. Although approaches based on vision transformers have made significant progress in geolocalization accuracy, success in prior literature is constrained to narrow distributions of images of landmarks, and performance has not generalized to unseen places. We present a new geolocalization system that combines semantic geocell creation, multi-task contrastive pretraining, and a novel loss function. Additionally, our work is the first to perform retrieval over location clusters for guess refinements. We train two models for evaluations on street-level data and general-purpose image geolocalization; the first model, PIGEON, is trained on data from the game of Geoguessr and is capable of placing over 40% of its guesses within 25 kilometers of the target location globally. We also develop a bot and deploy PIGEON in a blind experiment against humans, ranking in the top 0.01% of players. We further challenge one of the world's foremost professional Geoguessr players to a series of six matches with millions of viewers, winning all six games. Our second model, PIGEOTTO, differs in that it is trained on a dataset of images from Flickr and Wikipedia, achieving state-of-the-art results on a wide range of image geolocalization benchmarks, outperforming the previous SOTA by up to 7.7 percentage points on the city accuracy level and up to 38.8 percentage points on the country level. Our findings suggest that PIGEOTTO is the first image geolocalization model that effectively generalizes to unseen places and that our approach can pave the way for highly accurate, planet-scale image geolocalization systems. Our code is available on GitHub.

  • 4 authors
·
Jul 11, 2023 1

MMCR: Benchmarking Cross-Source Reasoning in Scientific Papers

Fully comprehending scientific papers by machines reflects a high level of Artificial General Intelligence, requiring the ability to reason across fragmented and heterogeneous sources of information, presenting a complex and practically significant challenge. While Vision-Language Models (VLMs) have made remarkable strides in various tasks, particularly those involving reasoning with evidence source from single image or text page, their ability to use cross-source information for reasoning remains an open problem. This work presents MMCR, a high-difficulty benchmark designed to evaluate VLMs' capacity for reasoning with cross-source information from scientific papers. The benchmark comprises 276 high-quality questions, meticulously annotated by humans across 7 subjects and 10 task types. Experiments with 18 VLMs demonstrate that cross-source reasoning presents a substantial challenge for existing models. Notably, even the top-performing model, GPT-4o, achieved only 48.55% overall accuracy, with only 20% accuracy in multi-table comprehension tasks, while the second-best model, Qwen2.5-VL-72B, reached 39.86% overall accuracy. Furthermore, we investigated the impact of the Chain-of-Thought (CoT) technique on cross-source reasoning and observed a detrimental effect on small models, whereas larger models demonstrated substantially enhanced performance. These results highlight the pressing need to develop VLMs capable of effectively utilizing cross-source information for reasoning.

  • 5 authors
·
Mar 21

SteloCoder: a Decoder-Only LLM for Multi-Language to Python Code Translation

With the recent focus on Large Language Models (LLMs), both StarCoder (Li et al., 2023) and Code Llama (Rozi\`ere et al., 2023) have demonstrated remarkable performance in code generation. However, there is still a need for improvement in code translation functionality with efficient training techniques. In response to this, we introduce SteloCoder, a decoder-only StarCoder-based LLM designed specifically for multi-programming language-to-Python code translation. In particular, SteloCoder achieves C++, C#, JavaScript, Java, or PHP-to-Python code translation without specifying the input programming language. We modified StarCoder model architecture by incorporating a Mixture-of-Experts (MoE) technique featuring five experts and a gating network for multi-task handling. Experts are obtained by StarCoder fine-tuning. Specifically, we use a Low-Rank Adaptive Method (LoRA) technique, limiting each expert size as only 0.06% of number of StarCoder's parameters. At the same time, to enhance training efficiency in terms of time, we adopt curriculum learning strategy and use self-instruct data for efficient fine-tuning. As a result, each expert takes only 6 hours to train on one single 80Gb A100 HBM. With experiments on XLCoST datasets, SteloCoder achieves an average of 73.76 CodeBLEU score in multi-programming language-to-Python translation, surpassing the top performance from the leaderboard by at least 3.5. This accomplishment is attributed to only 45M extra parameters with StarCoder as the backbone and 32 hours of valid training on one 80GB A100 HBM. The source code is release here: https://github.com/sade-adrien/SteloCoder.

  • 6 authors
·
Oct 24, 2023

PlanarTrack: A Large-scale Challenging Benchmark for Planar Object Tracking

Planar object tracking is a critical computer vision problem and has drawn increasing interest owing to its key roles in robotics, augmented reality, etc. Despite rapid progress, its further development, especially in the deep learning era, is largely hindered due to the lack of large-scale challenging benchmarks. Addressing this, we introduce PlanarTrack, a large-scale challenging planar tracking benchmark. Specifically, PlanarTrack consists of 1,000 videos with more than 490K images. All these videos are collected in complex unconstrained scenarios from the wild, which makes PlanarTrack, compared with existing benchmarks, more challenging but realistic for real-world applications. To ensure the high-quality annotation, each frame in PlanarTrack is manually labeled using four corners with multiple-round careful inspection and refinement. To our best knowledge, PlanarTrack, to date, is the largest and most challenging dataset dedicated to planar object tracking. In order to analyze the proposed PlanarTrack, we evaluate 10 planar trackers and conduct comprehensive comparisons and in-depth analysis. Our results, not surprisingly, demonstrate that current top-performing planar trackers degenerate significantly on the challenging PlanarTrack and more efforts are needed to improve planar tracking in the future. In addition, we further derive a variant named PlanarTrack_{BB} for generic object tracking from PlanarTrack. Our evaluation of 10 excellent generic trackers on PlanarTrack_{BB} manifests that, surprisingly, PlanarTrack_{BB} is even more challenging than several popular generic tracking benchmarks and more attention should be paid to handle such planar objects, though they are rigid. All benchmarks and evaluations will be released at the project webpage.

  • 9 authors
·
Mar 14, 2023

From Poses to Identity: Training-Free Person Re-Identification via Feature Centralization

Person re-identification (ReID) aims to extract accurate identity representation features. However, during feature extraction, individual samples are inevitably affected by noise (background, occlusions, and model limitations). Considering that features from the same identity follow a normal distribution around identity centers after training, we propose a Training-Free Feature Centralization ReID framework (Pose2ID) by aggregating the same identity features to reduce individual noise and enhance the stability of identity representation, which preserves the feature's original distribution for following strategies such as re-ranking. Specifically, to obtain samples of the same identity, we introduce two components:Identity-Guided Pedestrian Generation: by leveraging identity features to guide the generation process, we obtain high-quality images with diverse poses, ensuring identity consistency even in complex scenarios such as infrared, and occlusion.Neighbor Feature Centralization: it explores each sample's potential positive samples from its neighborhood. Experiments demonstrate that our generative model exhibits strong generalization capabilities and maintains high identity consistency. With the Feature Centralization framework, we achieve impressive performance even with an ImageNet pre-trained model without ReID training, reaching mAP/Rank-1 of 52.81/78.92 on Market1501. Moreover, our method sets new state-of-the-art results across standard, cross-modality, and occluded ReID tasks, showcasing strong adaptability.

  • 5 authors
·
Mar 2

NEVLP: Noise-Robust Framework for Efficient Vision-Language Pre-training

The success of Vision Language Models (VLMs) on various vision-language tasks heavily relies on pre-training with large scale web-crawled datasets. However, the noisy and incomplete nature of web data makes dataset scale crucial for performance, rendering end-to-end training increasingly prohibitive. In this paper, we propose NEVLP, a noise-robust framework for efficient vision-language pre-training that requires less pre-training data. Specifically, we bridge the modality gap between a frozen image encoder and a large language model with a transformer and introduce two innovative learning strategies: noise-adaptive learning and concept-enhanced learning to mitigate the impact of noise. In noise-adaptive learning, we estimate the noise probability of each image-text pair based on the transformer's memorization effect and employ noise-adaptive regularization on image-text contrastive learning to condition cross-modal alignment. In concept-enhanced learning, we enrich incomplete text by incorporating visual concepts (objects in the image) to provide prior information about existing objects for image-text matching and image-grounded text generation, thereby mitigating text incompletion. Our framework effectively utilizes noisy web data and achieves state-of-the-art performance with less pre-training data across a wide range of vision-language tasks, including image-text retrieval, image captioning, and visual question answering.

  • 4 authors
·
Sep 14, 2024 1

Soft Prompt Generation for Domain Generalization

Large pre-trained vision language models (VLMs) have shown impressive zero-shot ability on downstream tasks with manually designed prompt, which are not optimal for specific domains. To further adapt VLMs to downstream tasks, soft prompt is proposed to replace manually designed prompt, which acts as a learning vector that undergoes fine-tuning based on specific domain data. Prior prompt learning methods primarily learn a fixed prompt and residuled prompt from training samples. However, the learned prompts lack diversity and ignore information about unseen domains, potentially compromising the transferability of the prompts. In this paper, we reframe the prompt learning framework from a generative perspective and propose a simple yet efficient method for the Domain Generalization (DG) task, namely Soft Prompt Generation (SPG). To the best of our knowledge, we are the first to introduce the generative model into prompt learning in VLMs and explore its potential for producing soft prompts by relying solely on the generative model, ensuring the diversity of prompts. Specifically, SPG consists of a two-stage training phase and an inference phase. During the training phase, we introduce soft prompt labels for each domain, aiming to incorporate the generative model domain knowledge. During the inference phase, the generator of the generative model is employed to obtain instance-specific soft prompts for the unseen target domain. Extensive experiments on five domain generalization benchmarks of three DG tasks demonstrate that our proposed SPG achieves state-of-the-art performance. The code will be available soon.

  • 5 authors
·
Apr 30, 2024

Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation

Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention. By computing only critical tokens, sparse attention reduces computational costs and offers a promising acceleration approach. However, we identify that existing methods fail to approach optimal generation quality under the same computation budget for two reasons: (1) Inaccurate critical token identification: current methods cluster tokens based on position rather than semantics, leading to imprecise aggregated representations. (2) Excessive computation waste: critical tokens are scattered among non-critical ones, leading to wasted computation on GPUs, which are optimized for processing contiguous tokens. In this paper, we propose SVG2, a training-free framework that maximizes identification accuracy and minimizes computation waste, achieving a Pareto frontier trade-off between generation quality and efficiency. The core of SVG2 is semantic-aware permutation, which clusters and reorders tokens based on semantic similarity using k-means. This approach ensures both a precise cluster representation, improving identification accuracy, and a densified layout of critical tokens, enabling efficient computation without padding. Additionally, SVG2 integrates top-p dynamic budget control and customized kernel implementations, achieving up to 2.30x and 1.89x speedup while maintaining a PSNR of up to 30 and 26 on HunyuanVideo and Wan 2.1, respectively.

  • 14 authors
·
May 24 2

Mirostat: A Neural Text Decoding Algorithm that Directly Controls Perplexity

Neural text decoding is important for generating high-quality texts using language models. To generate high-quality text, popular decoding algorithms like top-k, top-p (nucleus), and temperature-based sampling truncate or distort the unreliable low probability tail of the language model. Though these methods generate high-quality text after parameter tuning, they are ad hoc. Not much is known about the control they provide over the statistics of the output, which is important since recent reports show text quality is highest for a specific range of likelihoods. Here, first we provide a theoretical analysis of perplexity in top-k, top-p, and temperature sampling, finding that cross-entropy behaves approximately linearly as a function of p in top-p sampling whereas it is a nonlinear function of k in top-k sampling, under Zipfian statistics. We use this analysis to design a feedback-based adaptive top-k text decoding algorithm called mirostat that generates text (of any length) with a predetermined value of perplexity, and thereby high-quality text without any tuning. Experiments show that for low values of k and p in top-k and top-p sampling, perplexity drops significantly with generated text length, which is also correlated with excessive repetitions in the text (the boredom trap). On the other hand, for large values of k and p, we find that perplexity increases with generated text length, which is correlated with incoherence in the text (confusion trap). Mirostat avoids both traps: experiments show that cross-entropy has a near-linear relation with repetition in generated text. This relation is almost independent of the sampling method but slightly dependent on the model used. Hence, for a given language model, control over perplexity also gives control over repetitions. Experiments with human raters for fluency, coherence, and quality further verify our findings.

  • 4 authors
·
Jul 29, 2020

GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator

6D pose estimation of rigid objects is a long-standing and challenging task in computer vision. Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses. Given that direct pose regression networks currently exhibit suboptimal performance, most methods still resort to traditional techniques to varying degrees. For example, top-performing methods often adopt an indirect strategy by first establishing 2D-3D or 3D-3D correspondences followed by applying the RANSAC-based PnP or Kabsch algorithms, and further employing ICP for refinement. Despite the performance enhancement, the integration of traditional techniques makes the networks time-consuming and not end-to-end trainable. Orthogonal to them, this paper introduces a fully learning-based object pose estimator. In this work, we first perform an in-depth investigation of both direct and indirect methods and propose a simple yet effective Geometry-guided Direct Regression Network (GDRN) to learn the 6D pose from monocular images in an end-to-end manner. Afterwards, we introduce a geometry-guided pose refinement module, enhancing pose accuracy when extra depth data is available. Guided by the predicted coordinate map, we build an end-to-end differentiable architecture that establishes robust and accurate 3D-3D correspondences between the observed and rendered RGB-D images to refine the pose. Our enhanced pose estimation pipeline GDRNPP (GDRN Plus Plus) conquered the leaderboard of the BOP Challenge for two consecutive years, becoming the first to surpass all prior methods that relied on traditional techniques in both accuracy and speed. The code and models are available at https://github.com/shanice-l/gdrnpp_bop2022.

  • 7 authors
·
Feb 24, 2021

PA-LLaVA: A Large Language-Vision Assistant for Human Pathology Image Understanding

The previous advancements in pathology image understanding primarily involved developing models tailored to specific tasks. Recent studies has demonstrated that the large vision-language model can enhance the performance of various downstream tasks in medical image understanding. In this study, we developed a domain-specific large language-vision assistant (PA-LLaVA) for pathology image understanding. Specifically, (1) we first construct a human pathology image-text dataset by cleaning the public medical image-text data for domain-specific alignment; (2) Using the proposed image-text data, we first train a pathology language-image pretraining (PLIP) model as the specialized visual encoder for pathology image, and then we developed scale-invariant connector to avoid the information loss caused by image scaling; (3) We adopt two-stage learning to train PA-LLaVA, first stage for domain alignment, and second stage for end to end visual question \& answering (VQA) task. In experiments, we evaluate our PA-LLaVA on both supervised and zero-shot VQA datasets, our model achieved the best overall performance among multimodal models of similar scale. The ablation experiments also confirmed the effectiveness of our design. We posit that our PA-LLaVA model and the datasets presented in this work can promote research in field of computational pathology. All codes are available at: https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA}{https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA

  • 7 authors
·
Aug 18, 2024

Multimodal Molecular Pretraining via Modality Blending

Self-supervised learning has recently gained growing interest in molecular modeling for scientific tasks such as AI-assisted drug discovery. Current studies consider leveraging both 2D and 3D molecular structures for representation learning. However, relying on straightforward alignment strategies that treat each modality separately, these methods fail to exploit the intrinsic correlation between 2D and 3D representations that reflect the underlying structural characteristics of molecules, and only perform coarse-grained molecule-level alignment. To derive fine-grained alignment and promote structural molecule understanding, we introduce an atomic-relation level "blend-then-predict" self-supervised learning approach, MoleBLEND, which first blends atom relations represented by different modalities into one unified relation matrix for joint encoding, then recovers modality-specific information for 2D and 3D structures individually. By treating atom relationships as anchors, MoleBLEND organically aligns and integrates visually dissimilar 2D and 3D modalities of the same molecule at fine-grained atomic level, painting a more comprehensive depiction of each molecule. Extensive experiments show that MoleBLEND achieves state-of-the-art performance across major 2D/3D molecular benchmarks. We further provide theoretical insights from the perspective of mutual-information maximization, demonstrating that our method unifies contrastive, generative (cross-modality prediction) and mask-then-predict (single-modality prediction) objectives into one single cohesive framework.

  • 7 authors
·
Jul 12, 2023

The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase CT

This paper presents the challenge report for the 2021 Kidney and Kidney Tumor Segmentation Challenge (KiTS21) held in conjunction with the 2021 international conference on Medical Image Computing and Computer Assisted Interventions (MICCAI). KiTS21 is a sequel to its first edition in 2019, and it features a variety of innovations in how the challenge was designed, in addition to a larger dataset. A novel annotation method was used to collect three separate annotations for each region of interest, and these annotations were performed in a fully transparent setting using a web-based annotation tool. Further, the KiTS21 test set was collected from an outside institution, challenging participants to develop methods that generalize well to new populations. Nonetheless, the top-performing teams achieved a significant improvement over the state of the art set in 2019, and this performance is shown to inch ever closer to human-level performance. An in-depth meta-analysis is presented describing which methods were used and how they faired on the leaderboard, as well as the characteristics of which cases generally saw good performance, and which did not. Overall KiTS21 facilitated a significant advancement in the state of the art in kidney tumor segmentation, and provides useful insights that are applicable to the field of semantic segmentation as a whole.

  • 45 authors
·
Jul 4, 2023

Prototype-Sample Relation Distillation: Towards Replay-Free Continual Learning

In Continual learning (CL) balancing effective adaptation while combating catastrophic forgetting is a central challenge. Many of the recent best-performing methods utilize various forms of prior task data, e.g. a replay buffer, to tackle the catastrophic forgetting problem. Having access to previous task data can be restrictive in many real-world scenarios, for example when task data is sensitive or proprietary. To overcome the necessity of using previous tasks' data, in this work, we start with strong representation learning methods that have been shown to be less prone to forgetting. We propose a holistic approach to jointly learn the representation and class prototypes while maintaining the relevance of old class prototypes and their embedded similarities. Specifically, samples are mapped to an embedding space where the representations are learned using a supervised contrastive loss. Class prototypes are evolved continually in the same latent space, enabling learning and prediction at any point. To continually adapt the prototypes without keeping any prior task data, we propose a novel distillation loss that constrains class prototypes to maintain relative similarities as compared to new task data. This method yields state-of-the-art performance in the task-incremental setting, outperforming methods relying on large amounts of data, and provides strong performance in the class-incremental setting without using any stored data points.

  • 5 authors
·
Mar 26, 2023

An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation

The ACM Recommender Systems Challenge 2018 focused on the task of automatic music playlist continuation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length with some additional meta-data, the task was to recommend up to 500 tracks that fit the target characteristics of the original playlist. For the RecSys Challenge, Spotify released a dataset of one million user-generated playlists. Participants could compete in two tracks, i.e., main and creative tracks. Participants in the main track were only allowed to use the provided training set, however, in the creative track, the use of external public sources was permitted. In total, 113 teams submitted 1,228 runs to the main track; 33 teams submitted 239 runs to the creative track. The highest performing team in the main track achieved an R-precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was obtained by the best team. This article provides an overview of the challenge, including motivation, task definition, dataset description, and evaluation. We further report and analyze the results obtained by the top performing teams in each track and explore the approaches taken by the winners. We finally summarize our key findings, discuss generalizability of approaches and results to domains other than music, and list the open avenues and possible future directions in the area of automatic playlist continuation.

  • 4 authors
·
Oct 2, 2018