--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation --- # Dream-Coder-v0-Instruct-7B This is the joint sampling enabled Dream-Coder-v0-Instruct-7B model. Kindly refer to the paper below for details. - **Arxiv:** https://www.arxiv.org/pdf/2509.22738 ## How to use Here is a simple script for running the model. Setting the `use_adjust` flag as `False` generates from the base diffusion LM with naive parallel sampling. ```python from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, set_seed model_path = "pbansal/Dream-Coder-v0-Instruct-7B-Adjust" model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.to("cuda").eval() use_adjust = True # Set to false to sample from just the base model messages = [ {"role": "user", "content": "Write a quick sort algorithm."} ] inputs = tokenizer.apply_chat_template( messages, return_tensors="pt", return_dict=True, add_generation_prompt=True ) input_ids = inputs.input_ids.to(device="cuda") attention_mask = inputs.attention_mask.to(device="cuda") output = model.diffusion_generate( input_ids, attention_mask=attention_mask, max_new_tokens=768, output_history=True, return_dict_in_generate=True, steps=768, temperature=0.1, top_p=0.95, alg="entropy", alg_temp=0., use_adjust=use_adjust, ) generations = [ tokenizer.decode(g.tolist()) for p, g in zip(input_ids, output.sequences) ] print(generations[0].split(tokenizer.eos_token)[0]) ```