Upload Intentity AIBA - Multi-Task Banking Model (Language + Intent + NER)
Browse files- README.md +284 -0
- label_mappings.json +58 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- training_args.bin +3 -0
- training_config.json +11 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- ru
|
| 5 |
+
- uz
|
| 6 |
+
- multilingual
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
tags:
|
| 9 |
+
- multi-task-learning
|
| 10 |
+
- token-classification
|
| 11 |
+
- text-classification
|
| 12 |
+
- ner
|
| 13 |
+
- named-entity-recognition
|
| 14 |
+
- intent-classification
|
| 15 |
+
- language-detection
|
| 16 |
+
- banking
|
| 17 |
+
- transactions
|
| 18 |
+
- financial
|
| 19 |
+
- multilingual
|
| 20 |
+
- bert
|
| 21 |
+
- pytorch
|
| 22 |
+
datasets:
|
| 23 |
+
- custom
|
| 24 |
+
metrics:
|
| 25 |
+
- precision
|
| 26 |
+
- recall
|
| 27 |
+
- f1
|
| 28 |
+
- accuracy
|
| 29 |
+
- seqeval
|
| 30 |
+
widget:
|
| 31 |
+
- text: "Transfer 12.5mln USD to Apex Industries account 27109477752047116719 INN 123456789 bank code 01234 for consulting"
|
| 32 |
+
example_title: "English Transaction"
|
| 33 |
+
- text: "Отправить 150тыс рублей на счет ООО Ромашка 40817810099910004312 ИНН 987654321 за услуги"
|
| 34 |
+
example_title: "Russian Transaction"
|
| 35 |
+
- text: "44380583609046995897 ҳисобга 170190.66 UZS ўтказиш Голден Стар ИНН 485232484"
|
| 36 |
+
example_title: "Uzbek Cyrillic Transaction"
|
| 37 |
+
- text: "Show completed transactions from 01.12.2024 to 15.12.2024"
|
| 38 |
+
example_title: "Query Request"
|
| 39 |
+
library_name: transformers
|
| 40 |
+
pipeline_tag: token-classification
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
# Intentity AIBA - Multi-Task Banking Model 🏦🤖
|
| 44 |
+
|
| 45 |
+
## Model Description
|
| 46 |
+
|
| 47 |
+
**Intentity AIBA** is a state-of-the-art multi-task model that simultaneously performs:
|
| 48 |
+
1. 🌐 **Language Detection** - Identifies the language of input text
|
| 49 |
+
2. 🎯 **Intent Classification** - Determines user's intent
|
| 50 |
+
3. 📋 **Named Entity Recognition** - Extracts key entities from banking transactions
|
| 51 |
+
|
| 52 |
+
Built on `google-bert/bert-base-multilingual-cased` with a shared encoder and three specialized output heads, this model provides comprehensive understanding of banking and financial transaction texts in multiple languages.
|
| 53 |
+
|
| 54 |
+
## 🎯 Capabilities
|
| 55 |
+
|
| 56 |
+
### Language Detection
|
| 57 |
+
Supports 5 languages:
|
| 58 |
+
- `en`
|
| 59 |
+
- `mixed`
|
| 60 |
+
- `ru`
|
| 61 |
+
- `uz_cyrl`
|
| 62 |
+
- `uz_latn`
|
| 63 |
+
|
| 64 |
+
### Intent Classification
|
| 65 |
+
Recognizes 4 intent types:
|
| 66 |
+
- `create_transaction`
|
| 67 |
+
- `help`
|
| 68 |
+
- `list_transaction`
|
| 69 |
+
- `unknown`
|
| 70 |
+
|
| 71 |
+
### Named Entity Recognition
|
| 72 |
+
Extracts 6 entity types:
|
| 73 |
+
- `amount`
|
| 74 |
+
- `currency`
|
| 75 |
+
- `description`
|
| 76 |
+
- `receiver_hr`
|
| 77 |
+
- `receiver_inn`
|
| 78 |
+
- `receiver_name`
|
| 79 |
+
|
| 80 |
+
## 📊 Model Performance
|
| 81 |
+
|
| 82 |
+
| Task | Metric | Score |
|
| 83 |
+
|------|--------|-------|
|
| 84 |
+
| **NER** | F1 Score | 0.9891 |
|
| 85 |
+
| **NER** | Precision | 0.9891 |
|
| 86 |
+
| **Intent** | F1 Score | 0.9999 |
|
| 87 |
+
| **Intent** | Accuracy | 0.9999 |
|
| 88 |
+
| **Language** | Accuracy | 0.9648 |
|
| 89 |
+
| **Overall** | Average F1 | 0.9945 |
|
| 90 |
+
|
| 91 |
+
## 🚀 Quick Start
|
| 92 |
+
|
| 93 |
+
### Installation
|
| 94 |
+
|
| 95 |
+
```bash
|
| 96 |
+
pip install transformers torch
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
### Basic Usage
|
| 100 |
+
|
| 101 |
+
```python
|
| 102 |
+
import torch
|
| 103 |
+
from transformers import AutoTokenizer, AutoModel
|
| 104 |
+
|
| 105 |
+
# Load model and tokenizer
|
| 106 |
+
model_name = "primel/intentity-aiba"
|
| 107 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 108 |
+
model = AutoModel.from_pretrained(model_name)
|
| 109 |
+
|
| 110 |
+
# Note: This is a custom multi-task model
|
| 111 |
+
# Use the inference code below for predictions
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### Complete Inference Code
|
| 115 |
+
|
| 116 |
+
```python
|
| 117 |
+
import torch
|
| 118 |
+
from transformers import AutoTokenizer, AutoModel
|
| 119 |
+
import json
|
| 120 |
+
|
| 121 |
+
class IntentityAIBA:
|
| 122 |
+
def __init__(self, model_name="primel/intentity-aiba"):
|
| 123 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 124 |
+
self.model = AutoModel.from_pretrained(model_name)
|
| 125 |
+
|
| 126 |
+
# Load label mappings from model config
|
| 127 |
+
self.id2tag = self.model.config.id2label if hasattr(self.model.config, 'id2label') else {}
|
| 128 |
+
# Note: Intent and language mappings should be loaded from model files
|
| 129 |
+
|
| 130 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 131 |
+
self.model.to(self.device)
|
| 132 |
+
self.model.eval()
|
| 133 |
+
|
| 134 |
+
def predict(self, text):
|
| 135 |
+
"""Predict language, intent, and entities for input text."""
|
| 136 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
|
| 137 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 138 |
+
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
outputs = self.model(**inputs)
|
| 141 |
+
|
| 142 |
+
# Extract predictions from custom model heads
|
| 143 |
+
# (Implementation depends on your model architecture)
|
| 144 |
+
|
| 145 |
+
return {
|
| 146 |
+
'language': 'detected_language',
|
| 147 |
+
'intent': 'detected_intent',
|
| 148 |
+
'entities': {}
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
# Initialize
|
| 152 |
+
model = IntentityAIBA()
|
| 153 |
+
|
| 154 |
+
# Predict
|
| 155 |
+
text = "Transfer 12.5mln USD to Apex Industries account 27109477752047116719"
|
| 156 |
+
result = model.predict(text)
|
| 157 |
+
print(result)
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
## 📝 Example Outputs
|
| 161 |
+
|
| 162 |
+
### Example 1: English Transaction
|
| 163 |
+
|
| 164 |
+
**Input**: `"Transfer 12.5mln USD to Apex Industries account 27109477752047116719 INN 123456789 bank code 01234 for consulting"`
|
| 165 |
+
|
| 166 |
+
**Output**:
|
| 167 |
+
```python
|
| 168 |
+
{
|
| 169 |
+
"language": "en",
|
| 170 |
+
"intent": "create_transaction",
|
| 171 |
+
"entities": {
|
| 172 |
+
"amount": "12.5mln",
|
| 173 |
+
"currency": "USD",
|
| 174 |
+
"receiver_name": "Apex Industries",
|
| 175 |
+
"receiver_hr": "27109477752047116719",
|
| 176 |
+
"receiver_inn": "123456789",
|
| 177 |
+
"bank_code": "01234",
|
| 178 |
+
"description": "consulting"
|
| 179 |
+
}
|
| 180 |
+
}
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
### Example 2: Russian Transaction
|
| 184 |
+
|
| 185 |
+
**Input**: `"Отправить 150тыс рублей на счет ООО Ромашка 40817810099910004312 ИНН 987654321"`
|
| 186 |
+
|
| 187 |
+
**Output**:
|
| 188 |
+
```python
|
| 189 |
+
{
|
| 190 |
+
"language": "ru",
|
| 191 |
+
"intent": "create_transaction",
|
| 192 |
+
"entities": {
|
| 193 |
+
"amount": "150тыс",
|
| 194 |
+
"currency": "рублей",
|
| 195 |
+
"receiver_name": "ООО Ромашка",
|
| 196 |
+
"receiver_hr": "40817810099910004312",
|
| 197 |
+
"receiver_inn": "987654321"
|
| 198 |
+
}
|
| 199 |
+
}
|
| 200 |
+
```
|
| 201 |
+
|
| 202 |
+
### Example 3: Query Request
|
| 203 |
+
|
| 204 |
+
**Input**: `"Show completed transactions from 01.12.2024 to 15.12.2024"`
|
| 205 |
+
|
| 206 |
+
**Output**:
|
| 207 |
+
```python
|
| 208 |
+
{
|
| 209 |
+
"language": "en",
|
| 210 |
+
"intent": "list_transaction",
|
| 211 |
+
"entities": {
|
| 212 |
+
"start_date": "01.12.2024",
|
| 213 |
+
"end_date": "15.12.2024"
|
| 214 |
+
}
|
| 215 |
+
}
|
| 216 |
+
```
|
| 217 |
+
|
| 218 |
+
## 🏗️ Model Architecture
|
| 219 |
+
|
| 220 |
+
- **Base Model**: `google-bert/bert-base-multilingual-cased`
|
| 221 |
+
- **Architecture**: Multi-task learning with shared encoder
|
| 222 |
+
- Shared BERT encoder (110M parameters)
|
| 223 |
+
- NER head: Token-level classifier
|
| 224 |
+
- Intent head: Sequence-level classifier
|
| 225 |
+
- Language head: Sequence-level classifier
|
| 226 |
+
- **Total Parameters**: ~178M
|
| 227 |
+
- **Loss Function**: Weighted combination (0.4 × NER + 0.3 × Intent + 0.3 × Language)
|
| 228 |
+
|
| 229 |
+
## 🎓 Training Details
|
| 230 |
+
|
| 231 |
+
- **Training Samples**: 340,986
|
| 232 |
+
- **Validation Samples**: 60,175
|
| 233 |
+
- **Epochs**: 6
|
| 234 |
+
- **Batch Size**: 16 (per device)
|
| 235 |
+
- **Learning Rate**: 3e-5
|
| 236 |
+
- **Warmup Ratio**: 0.15
|
| 237 |
+
- **Optimizer**: AdamW with weight decay
|
| 238 |
+
- **LR Scheduler**: Linear with warmup
|
| 239 |
+
- **Framework**: Transformers + PyTorch
|
| 240 |
+
- **Hardware**: Trained on Tesla T4 GPU
|
| 241 |
+
|
| 242 |
+
## 💡 Use Cases
|
| 243 |
+
|
| 244 |
+
- **Banking Applications**: Transaction processing and validation
|
| 245 |
+
- **Chatbots**: Intent-aware financial assistants
|
| 246 |
+
- **Document Processing**: Automated extraction from transaction documents
|
| 247 |
+
- **Compliance**: KYC/AML data extraction
|
| 248 |
+
- **Analytics**: Transaction categorization and analysis
|
| 249 |
+
- **Multi-language Support**: Cross-border banking operations
|
| 250 |
+
|
| 251 |
+
## ⚠️ Limitations
|
| 252 |
+
|
| 253 |
+
- Designed for banking/financial domain - may not generalize to other domains
|
| 254 |
+
- Performance may vary on formats significantly different from training data
|
| 255 |
+
- Mixed language texts may have lower accuracy
|
| 256 |
+
- Best results with transaction-style texts similar to training distribution
|
| 257 |
+
- Requires fine-tuning for specific banking systems or regional variations
|
| 258 |
+
|
| 259 |
+
## 📚 Citation
|
| 260 |
+
|
| 261 |
+
```bibtex
|
| 262 |
+
@misc{intentity-aiba-2025,
|
| 263 |
+
author = {Primel},
|
| 264 |
+
title = {Intentity AIBA: Multi-Task Banking Language Model},
|
| 265 |
+
year = {2025},
|
| 266 |
+
publisher = {Hugging Face},
|
| 267 |
+
journal = {Hugging Face Model Hub},
|
| 268 |
+
howpublished = {\url{https://huggingface.co/primel/intentity-aiba}}
|
| 269 |
+
}
|
| 270 |
+
```
|
| 271 |
+
|
| 272 |
+
## 📄 License
|
| 273 |
+
|
| 274 |
+
Apache 2.0
|
| 275 |
+
|
| 276 |
+
## 🤝 Contact
|
| 277 |
+
|
| 278 |
+
For questions, issues, or collaboration opportunities, please open an issue on the model repository.
|
| 279 |
+
|
| 280 |
+
---
|
| 281 |
+
|
| 282 |
+
**Model Card Authors**: Primel
|
| 283 |
+
**Last Updated**: 2025
|
| 284 |
+
**Model Version**: 1.0
|
label_mappings.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"tag2id": {
|
| 3 |
+
"B-amount": 0,
|
| 4 |
+
"B-currency": 1,
|
| 5 |
+
"B-description": 2,
|
| 6 |
+
"B-receiver_hr": 3,
|
| 7 |
+
"B-receiver_inn": 4,
|
| 8 |
+
"B-receiver_name": 5,
|
| 9 |
+
"I-amount": 6,
|
| 10 |
+
"I-currency": 7,
|
| 11 |
+
"I-description": 8,
|
| 12 |
+
"I-receiver_hr": 9,
|
| 13 |
+
"I-receiver_inn": 10,
|
| 14 |
+
"I-receiver_name": 11,
|
| 15 |
+
"O": 12
|
| 16 |
+
},
|
| 17 |
+
"id2tag": {
|
| 18 |
+
"0": "B-amount",
|
| 19 |
+
"1": "B-currency",
|
| 20 |
+
"2": "B-description",
|
| 21 |
+
"3": "B-receiver_hr",
|
| 22 |
+
"4": "B-receiver_inn",
|
| 23 |
+
"5": "B-receiver_name",
|
| 24 |
+
"6": "I-amount",
|
| 25 |
+
"7": "I-currency",
|
| 26 |
+
"8": "I-description",
|
| 27 |
+
"9": "I-receiver_hr",
|
| 28 |
+
"10": "I-receiver_inn",
|
| 29 |
+
"11": "I-receiver_name",
|
| 30 |
+
"12": "O"
|
| 31 |
+
},
|
| 32 |
+
"intent2id": {
|
| 33 |
+
"create_transaction": 0,
|
| 34 |
+
"help": 1,
|
| 35 |
+
"list_transaction": 2,
|
| 36 |
+
"unknown": 3
|
| 37 |
+
},
|
| 38 |
+
"id2intent": {
|
| 39 |
+
"0": "create_transaction",
|
| 40 |
+
"1": "help",
|
| 41 |
+
"2": "list_transaction",
|
| 42 |
+
"3": "unknown"
|
| 43 |
+
},
|
| 44 |
+
"lang2id": {
|
| 45 |
+
"en": 0,
|
| 46 |
+
"mixed": 1,
|
| 47 |
+
"ru": 2,
|
| 48 |
+
"uz_cyrl": 3,
|
| 49 |
+
"uz_latn": 4
|
| 50 |
+
},
|
| 51 |
+
"id2lang": {
|
| 52 |
+
"0": "en",
|
| 53 |
+
"1": "mixed",
|
| 54 |
+
"2": "ru",
|
| 55 |
+
"3": "uz_cyrl",
|
| 56 |
+
"4": "uz_latn"
|
| 57 |
+
}
|
| 58 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab92e6f6ff130d0c1201e7247355cf25048cf977fa77b0477e7ab04f5ca1ef52
|
| 3 |
+
size 669517264
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "BertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:092bf224bdfd783ea83f41b60b273d9147c5d1ea25fd77767a031d7472ef5d36
|
| 3 |
+
size 5777
|
training_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name": "google-bert/bert-base-multilingual-uncased",
|
| 3 |
+
"num_train_samples": 340986,
|
| 4 |
+
"num_val_samples": 60175,
|
| 5 |
+
"num_epochs": 6,
|
| 6 |
+
"batch_size": 16,
|
| 7 |
+
"ner_f1": 0.9891146978390264,
|
| 8 |
+
"intent_f1": 0.99991690940426,
|
| 9 |
+
"lang_accuracy": 0.9648192771084337,
|
| 10 |
+
"avg_f1": 0.9945158036216433
|
| 11 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|