v0.43.0
Browse filesDeprecation notice.
README.md
CHANGED
|
@@ -1,258 +1,10 @@
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: pytorch
|
| 3 |
license: other
|
| 4 |
tags:
|
| 5 |
-
-
|
| 6 |
-
|
| 7 |
-
pipeline_tag: unconditional-image-generation
|
| 8 |
|
| 9 |
---
|
| 10 |
-
|
| 11 |
-

|
| 12 |
-
|
| 13 |
-
# ControlNet: Optimized for Mobile Deployment
|
| 14 |
-
## Generating visual arts from text prompt and input guiding image
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.
|
| 18 |
-
|
| 19 |
-
This model is an implementation of ControlNet found [here](https://github.com/lllyasviel/ControlNet).
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
This repository provides scripts to run ControlNet on Qualcomm® devices.
|
| 23 |
-
More details on model performance across various devices, can be found
|
| 24 |
-
[here](https://aihub.qualcomm.com/models/controlnet).
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
### Model Details
|
| 28 |
-
|
| 29 |
-
- **Model Type:** Model_use_case.image_generation
|
| 30 |
-
- **Model Stats:**
|
| 31 |
-
- Input: Text prompt and input image as a reference
|
| 32 |
-
- Conditioning Input: Canny-Edge
|
| 33 |
-
- Text Encoder Number of parameters: 340M
|
| 34 |
-
- UNet Number of parameters: 865M
|
| 35 |
-
- VAE Decoder Number of parameters: 83M
|
| 36 |
-
- ControlNet Number of parameters: 361M
|
| 37 |
-
- Model size: 1.4GB
|
| 38 |
-
|
| 39 |
-
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
| 40 |
-
|---|---|---|---|---|---|---|---|---|
|
| 41 |
-
| TextEncoder_Quantized | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 10.874 ms | 0 - 3 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 42 |
-
| TextEncoder_Quantized | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 7.918 ms | 0 - 18 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 43 |
-
| TextEncoder_Quantized | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 10.875 ms | 0 - 3 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 44 |
-
| UNet_Quantized | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 258.151 ms | 13 - 15 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 45 |
-
| UNet_Quantized | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 197.629 ms | 13 - 31 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 46 |
-
| UNet_Quantized | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 256.936 ms | 13 - 16 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 47 |
-
| VAEDecoder_Quantized | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 397.625 ms | 0 - 2 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 48 |
-
| VAEDecoder_Quantized | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 300.627 ms | 0 - 21 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 49 |
-
| VAEDecoder_Quantized | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 395.006 ms | 0 - 3 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 50 |
-
| ControlNet_Quantized | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 104.668 ms | 2 - 9 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 51 |
-
| ControlNet_Quantized | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 77.289 ms | 2 - 23 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 52 |
-
| ControlNet_Quantized | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 103.817 ms | 2 - 5 MB | NPU | [ControlNet.dlc](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_w8a16.dlc) |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
## Installation
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
Install the package via pip:
|
| 61 |
-
```bash
|
| 62 |
-
pip install "qai-hub-models[controlnet]"
|
| 63 |
-
```
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
| 67 |
-
|
| 68 |
-
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
| 69 |
-
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
|
| 70 |
-
|
| 71 |
-
With this API token, you can configure your client to run models on the cloud
|
| 72 |
-
hosted devices.
|
| 73 |
-
```bash
|
| 74 |
-
qai-hub configure --api_token API_TOKEN
|
| 75 |
-
```
|
| 76 |
-
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
## Demo on-device
|
| 81 |
-
|
| 82 |
-
The package contains a simple end-to-end demo that downloads pre-trained
|
| 83 |
-
weights and runs this model on a sample input.
|
| 84 |
-
|
| 85 |
-
```bash
|
| 86 |
-
python -m qai_hub_models.models.controlnet.demo
|
| 87 |
-
```
|
| 88 |
-
|
| 89 |
-
The above demo runs a reference implementation of pre-processing, model
|
| 90 |
-
inference, and post processing.
|
| 91 |
-
|
| 92 |
-
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
| 93 |
-
environment, please add the following to your cell (instead of the above).
|
| 94 |
-
```
|
| 95 |
-
%run -m qai_hub_models.models.controlnet.demo
|
| 96 |
-
```
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
### Run model on a cloud-hosted device
|
| 100 |
-
|
| 101 |
-
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
|
| 102 |
-
device. This script does the following:
|
| 103 |
-
* Performance check on-device on a cloud-hosted device
|
| 104 |
-
* Downloads compiled assets that can be deployed on-device for Android.
|
| 105 |
-
* Accuracy check between PyTorch and on-device outputs.
|
| 106 |
-
|
| 107 |
-
```bash
|
| 108 |
-
python -m qai_hub_models.models.controlnet.export
|
| 109 |
-
```
|
| 110 |
-
```
|
| 111 |
-
Profiling Results
|
| 112 |
-
------------------------------------------------------------
|
| 113 |
-
TextEncoder_Quantized
|
| 114 |
-
Device : cs_8_gen_2 (ANDROID 13)
|
| 115 |
-
Runtime : QNN_DLC
|
| 116 |
-
Estimated inference time (ms) : 10.9
|
| 117 |
-
Estimated peak memory usage (MB): [0, 3]
|
| 118 |
-
Total # Ops : 569
|
| 119 |
-
Compute Unit(s) : npu (569 ops) gpu (0 ops) cpu (0 ops)
|
| 120 |
-
|
| 121 |
-
------------------------------------------------------------
|
| 122 |
-
UNet_Quantized
|
| 123 |
-
Device : cs_8_gen_2 (ANDROID 13)
|
| 124 |
-
Runtime : QNN_DLC
|
| 125 |
-
Estimated inference time (ms) : 258.2
|
| 126 |
-
Estimated peak memory usage (MB): [13, 15]
|
| 127 |
-
Total # Ops : 5433
|
| 128 |
-
Compute Unit(s) : npu (5433 ops) gpu (0 ops) cpu (0 ops)
|
| 129 |
-
|
| 130 |
-
------------------------------------------------------------
|
| 131 |
-
VAEDecoder_Quantized
|
| 132 |
-
Device : cs_8_gen_2 (ANDROID 13)
|
| 133 |
-
Runtime : QNN_DLC
|
| 134 |
-
Estimated inference time (ms) : 397.6
|
| 135 |
-
Estimated peak memory usage (MB): [0, 2]
|
| 136 |
-
Total # Ops : 408
|
| 137 |
-
Compute Unit(s) : npu (408 ops) gpu (0 ops) cpu (0 ops)
|
| 138 |
-
|
| 139 |
-
------------------------------------------------------------
|
| 140 |
-
ControlNet_Quantized
|
| 141 |
-
Device : cs_8_gen_2 (ANDROID 13)
|
| 142 |
-
Runtime : QNN_DLC
|
| 143 |
-
Estimated inference time (ms) : 104.7
|
| 144 |
-
Estimated peak memory usage (MB): [2, 9]
|
| 145 |
-
Total # Ops : 2405
|
| 146 |
-
Compute Unit(s) : npu (2405 ops) gpu (0 ops) cpu (0 ops)
|
| 147 |
-
```
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
## How does this work?
|
| 151 |
-
|
| 152 |
-
This [export script](https://aihub.qualcomm.com/models/controlnet/qai_hub_models/models/ControlNet/export.py)
|
| 153 |
-
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 154 |
-
on-device. Lets go through each step below in detail:
|
| 155 |
-
|
| 156 |
-
Step 1: **Upload compiled model**
|
| 157 |
-
|
| 158 |
-
Upload compiled models from `qai_hub_models.models.controlnet` on hub.
|
| 159 |
-
```python
|
| 160 |
-
import torch
|
| 161 |
-
|
| 162 |
-
import qai_hub as hub
|
| 163 |
-
from qai_hub_models.models.controlnet import Model
|
| 164 |
-
|
| 165 |
-
# Load the model
|
| 166 |
-
model = Model.from_precompiled()
|
| 167 |
-
|
| 168 |
-
```
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
Step 2: **Performance profiling on cloud-hosted device**
|
| 172 |
-
|
| 173 |
-
After uploading compiled models from step 1. Models can be profiled model on-device using the
|
| 174 |
-
`target_model`. Note that this scripts runs the model on a device automatically
|
| 175 |
-
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
| 176 |
-
provided job URL to view a variety of on-device performance metrics.
|
| 177 |
-
```python
|
| 178 |
-
|
| 179 |
-
# Device
|
| 180 |
-
device = hub.Device("Samsung Galaxy S23")
|
| 181 |
-
|
| 182 |
-
```
|
| 183 |
-
|
| 184 |
-
Step 3: **Verify on-device accuracy**
|
| 185 |
-
|
| 186 |
-
To verify the accuracy of the model on-device, you can run on-device inference
|
| 187 |
-
on sample input data on the same cloud hosted device.
|
| 188 |
-
```python
|
| 189 |
-
|
| 190 |
-
```
|
| 191 |
-
With the output of the model, you can compute like PSNR, relative errors or
|
| 192 |
-
spot check the output with expected output.
|
| 193 |
-
|
| 194 |
-
**Note**: This on-device profiling and inference requires access to Qualcomm®
|
| 195 |
-
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
## Deploying compiled model to Android
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
The models can be deployed using multiple runtimes:
|
| 204 |
-
- TensorFlow Lite (`.tflite` export): [This
|
| 205 |
-
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
|
| 206 |
-
guide to deploy the .tflite model in an Android application.
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
- QNN ( `.so` / `.bin` export ): This [sample
|
| 210 |
-
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
|
| 211 |
-
provides instructions on how to use the `.so` shared library or `.bin` context binary in an Android application.
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
## View on Qualcomm® AI Hub
|
| 215 |
-
Get more details on ControlNet's performance across various devices [here](https://aihub.qualcomm.com/models/controlnet).
|
| 216 |
-
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
## License
|
| 220 |
-
* The license for the original implementation of ControlNet can be found
|
| 221 |
-
[here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
|
| 222 |
-
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
## References
|
| 227 |
-
* [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
|
| 228 |
-
* [Source Model Implementation](https://github.com/lllyasviel/ControlNet)
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
## Community
|
| 233 |
-
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
| 234 |
-
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
## Usage and Limitations
|
| 238 |
-
|
| 239 |
-
This model may not be used for or in connection with any of the following applications:
|
| 240 |
-
|
| 241 |
-
- Accessing essential private and public services and benefits;
|
| 242 |
-
- Administration of justice and democratic processes;
|
| 243 |
-
- Assessing or recognizing the emotional state of a person;
|
| 244 |
-
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
|
| 245 |
-
- Education and vocational training;
|
| 246 |
-
- Employment and workers management;
|
| 247 |
-
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
|
| 248 |
-
- General purpose social scoring;
|
| 249 |
-
- Law enforcement;
|
| 250 |
-
- Management and operation of critical infrastructure;
|
| 251 |
-
- Migration, asylum and border control management;
|
| 252 |
-
- Predictive policing;
|
| 253 |
-
- Real-time remote biometric identification in public spaces;
|
| 254 |
-
- Recommender systems of social media platforms;
|
| 255 |
-
- Scraping of facial images (from the internet or otherwise); and/or
|
| 256 |
-
- Subliminal manipulation
|
| 257 |
-
|
| 258 |
-
|
|
|
|
| 1 |
+
|
| 2 |
---
|
| 3 |
library_name: pytorch
|
| 4 |
license: other
|
| 5 |
tags:
|
| 6 |
+
- deprecated
|
| 7 |
+
pipeline_tag: other
|
|
|
|
| 8 |
|
| 9 |
---
|
| 10 |
+
This model is deprecated. Please refer to https://aihub.qualcomm.com for the latest models and updates.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|