quicktensor commited on
Commit
1a994cd
·
verified ·
1 Parent(s): cfd0502

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -20,7 +20,7 @@ metrics:
20
 
21
  # BlockRank-Mistral-7B: Scalable In-context Ranking with Generative Models
22
 
23
- Try in Colab notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nilesh2797/BlockRank/blob/main/quickstart.ipynb)
24
 
25
  **BlockRank-Mistral-7B** is a fine-tuned version of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) optimized for efficient in-context document ranking. It implements BlockRank, a method that makes LLMs efficient and scalable for ranking by aligning their internal attention mechanisms with the structure of the ranking task.
26
 
@@ -30,10 +30,10 @@ Try in Colab notebook: [![Open In Colab](https://colab.research.google.com/asset
30
 
31
  ### Key Features
32
 
33
- - 🚀 **Linear Complexity Attention**: Structured sparse attention reduces complexity from O(n²) to O(n)
34
- - **2-4× Faster Inference**: Attention-based scoring eliminates autoregressive decoding
35
- - 🎯 **Auxiliary Contrastive Loss**: Mid-layer contrastive objective improves relevance signals
36
- - 📊 **Strong Zero-shot Generalization**: SOTA performance on BEIR benchmarks
37
 
38
  ## Citation
39
 
 
20
 
21
  # BlockRank-Mistral-7B: Scalable In-context Ranking with Generative Models
22
 
23
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nilesh2797/BlockRank/blob/main/quickstart.ipynb)
24
 
25
  **BlockRank-Mistral-7B** is a fine-tuned version of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) optimized for efficient in-context document ranking. It implements BlockRank, a method that makes LLMs efficient and scalable for ranking by aligning their internal attention mechanisms with the structure of the ranking task.
26
 
 
30
 
31
  ### Key Features
32
 
33
+ - **Linear Complexity Attention**: Structured sparse attention reduces complexity from O(n²) to O(n)
34
+ - **2-4× Faster Inference**: Attention-based scoring eliminates autoregressive decoding
35
+ - **Auxiliary Contrastive Loss**: Mid-layer contrastive objective improves relevance signals
36
+ - **Strong Zero-shot Generalization**: SOTA performance on BEIR benchmarks
37
 
38
  ## Citation
39